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1 Introduction

1.1 Standard Ewald summation

A general potential energy functionU of a system ofN particles with an interaction potentialφ(~xij + ~n)
and periodic boundary conditions can be expressed as

U =
1
2

∑†

~n

N∑
i=1

N∑
j=1

φ(~xij + ~n), (1)

where
∑

~n is the sum over all lattice vectors~n = (Lxnx, Lyny, Lznz), nx,y,z ∈ N and Lx,y,z are the
dimensions of the unit MD cell and~xij = ~xj − ~xi. The “daggered” (†) summation indicates the exclusion
of all pairsi = j inside the original unit MD cell (~n = ~0). Most molecular force fields provide exclusion
schemes to exclude additional pairs, e.g., the so-called1-3 exclusionexcludes directly connected pairs and
pairs with a direct common neighbor. Furthermore, some exclusion schemes may also modify the potential
by a factor for certain pairs.

If the potentialφ satisfies
|φ(~x)| ≤ A|~x|−3−ε (2)

for large enough~x andA > 0 andε > 0, then the sum in Eq. (1) is absolute convergent1.
Inequality (2) is not satisfied by the Coulomb potentialφ(~xij) = cqiqj |~xij |−1, such that the infinite

lattice sum in Eq. (1) is only conditionally convergent2. In case of the Lennard-Jones potential, the sum is
absolutely convergent.

The well-known Ewald summation method [6] is in general useful in systems with large, spatial potential
differences, where the summation over one unit cell does not converge sufficiently, i.e., the lattice sum is not
absolutely convergent. The lattice sum with the Coulomb potential is usually expressed as

Uelectrostatic=
1

4πε0

1
2

∑†

~n

N∑
i=1

N∑
j=1

qiqj

|~xij + ~n|
. (3)

To overcome the conditionally and insufficient convergence of Eq. (3), the sum is split into two parts by the
following trivial identity

1
r

=
f(r)

r
+

1− f(r)
r

. (4)

1The sum converges and does not depend on the order of summation.
2The convergence of the sum depends on the order of summation.
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The basic idea is to separate the fast variation part for smallr and the smooth part for larger. In particular,
the first part should decay fast and be negligible beyond some cutoff distance, whereas the second part
should be smooth for allr, such that its Fourier transform can be represented by a few terms. Ewald [6]
suggested to choose a Gaussian convergence factorg(s, ~n) = e−s|~n|2 such that the sum becomes (see [3] for
a detailed mathematical derivation of the Ewald summation)

Uelectrostatic =
1

4πε0

1
2

∑†

~n

N∑
i=1

N∑
j=1

qiqj
erfc(α|~xij + ~n|)

|~xij + ~n|︸ ︷︷ ︸
Real-space term

+
1

ε0V

1
2

∑
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1
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2

+
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2


︸ ︷︷ ︸
Reciprocal-space term

− 1
4πε0

1
2

M∑†−1

j=1

Nj∑
k=1

Nj∑
l=1

qjk
qjl

erf(α|~xjkjl
|)

|~xjkjl
|︸ ︷︷ ︸

Intra-molecular self energy

(5)

− α

4π
3
2 ε0

N∑
i=1

q2
i︸ ︷︷ ︸

Point self energy

− 1
8ε0V α2
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︸ ︷︷ ︸
Charged system term

+

 1
6ε0V

∣∣∣∣∣
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i=1

qixi

∣∣∣∣∣
2


︸ ︷︷ ︸
Surface dipole term

.

Here,α is the splitting parameter of the real and reciprocal part. For an optimalα the Ewald summation
scales asO(N

3
2 ) [6, 7, 16] in Eq. (8).†

−1
is the “inverse daggered” summation. The intra-molecular self

term corrects interactions on the same molecule, which are implicitly included in the reciprocal-space term,
but are not required in the exclusion model. Self interactions are canceled out by the self point term. The
charged system term is only necessary if the total net charge of the system is non-zero. Note, that some MD
systems have an additional surface dipole term to model dipolar systems more accurately [3, 19]. This term
is not suited for mobile ions, since it will create discontinuities in the energy and force contributions when
ions cross boundaries. The meaning of the symbols is

n lattice vector of periodic cell images
k reciprocal lattice vector of periodic cell images
k modulus ofk
i, j absolute indices of all charged sites
n index of molecules
κ, λ indices of sites within a single molecule
N total number of charged sites
M total number of molecules
Nj number of sites on moleculej
qi, qj charge on absolute sitei, j
qmκ charge on siteκ of moleculem
xi Cartesian co-ordinate of sitei
xij xj − xi

α real/reciprocal space partition parameter
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The electrostatic force on particlei is given by

F electrostatic
i = −∇~xi

Uelectrostatic

=
qi

4πε0

∑†

~n

N∑
j=1

qj

[
erfc(α|~xij + ~n|)

|~xij + ~n|
+

2α√
π

e−α2|~xij+~n|2
]

~xij + ~n

|~xij + ~n|2︸ ︷︷ ︸
Real-space term

+
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︸ ︷︷ ︸

Reciprocal-space term

+
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j

qj

[
2α√

π
e−α2|~xij |2 − erf(α|~xij |)
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]
~xij

|~xij |2︸ ︷︷ ︸
Intra-molecular term

(6)

+

 qi

6ε0V

 N∑
j=1

qjxj


︸ ︷︷ ︸

Surface dipole term

(7)

Furthermore, the Ewald method can also be used for van der Waals interactions [1, 11] and several other po-
tentials [8, pp. 237-256],[3]. The computational efficiency and accuracy for 2-dimensional periodic bound-
ary conditions in a 3-dimensional system is discussed in [12]. The case with 1-dimensional periodic bound-
ary conditions is addressed in [15]. To some extent, vacuum systems can be treated by imposing periodic
boundary conditions. The dimensions of the original unit cell are chosen big enough, such that the contri-
butions between cell images are negligible. In practice, the dimensions of the unit cell are a factor of100
larger than the minimal bounding box of particles.

The real, reciprocal and correction terms (the last 3 terms of Eq. (5)) can be evaluated independently.
This is typically used in combination with MTS to split the force into fast and slow varying parts. Fur-
thermore, the real space term supports not only simple truncation, but also switching functions to modify
the potential. The implementation supports parallelism (range computation) for the real, reciprocal and
correction terms. It handles MD systems for both vacuum and periodic boundary conditions. Due to the
relatively expensive sine and cosine functions, PROTOMOL uses look-up tables and the addition theorem to
evaluatecos(~k · ~xi) andsin(~k · ~xi) more efficiently in Eqs. (5) and (6); erf(x) and erfc(x) are by default not
approximated, since the system platforms provide a well optimized implementation.

Uniform Sheet Correction

The 5th term in Equation 5 is necessary only if the system has a non-zero net electric charge, and is useful
in special cases such as framework systems.

In a periodic system the electrostatic energy is finite only if the total electric charge of the MD cell is
zero. The reciprocal space sum in Equation 5 fork = 0 takes the form

1
k2

e−
k2

4α2

∣∣∣∣∣
N∑

i=1

qi

∣∣∣∣∣
2
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which is zero in the case of electroneutrality but infinite otherwise. Its omission from the sum in Equation 5
is physically equivalent to adding a uniform jelly of charge which exactly neutralizes the unbalanced point
charges. Though the form of the reciprocal space sum is unaffected by the uniform charge jelly the real-
space sum is not. The real-space part of the interaction of the jelly with each point charge as well as the
self-energy of the jelly itself must be included giving the fifth term in Equation 5.

Surface Dipole Term

The optional final term in Equations 5 and 6 if used performs the calculations under different periodic
boundary conditions. It was suggested by De Leeuw, Perram and Smith[] in order to accurately model
dipolar systems and is necessary in any calculation of a dielectric constant.

The distinction arises from considerations of how the imaginary set of infinite replicas is constructed
from a single copy of the MD box[, pp 156-159]. Consider a near-spherical cluster of MD cells. The “in-
finite” result for any property is the limit of its “cluster” value as the size of the cluster tends to infinity.
However this value is non-unique and depends on the dielectric constant,εs of the physical medium sur-
rounding the cluster. If this medium is conductive (εs = ∞) the dipole moment of the cluster is neutralized
by image charges, whereas in a vacuum (εs = 1) it remains. It is trivial to show that in that case the dipole
moment per unit volume (or per MD cell) doesnot decrease with the size of the cluster.

The final term in Equation 5 is just the dipole energy, and ought to be used in any calculation of the
dielectric constant of a dipolar molecular system. Note that as it represents the dipole at the surface of the
cluster the system is no longer truly periodic.

Conversely itmust notbe used if the simulated system contains mobile ions. Consider an ion crossing
a periodic boundary and jumping from one side of the MD cell to another. In that case the dipole moment
of the MD cell changes discontinuously. Because of the surface dipole term the calculation would model a
discontinuous macroscopic change in the dipole moment of the whole system caused by an infinite number
of ions jumping an infinite distance. This is manifested in practice by a large and discontinuous change in
the energy of the system and on the force on each charge within it.

This situation is completely non-physical but is easily avoided. However the problem may also arise
more subtly even when there are no mobile ions if a framework is being simulated. The framework is
treated as a set of discrete, but fixed atoms rather than a molecular unit. If the shape of the unit cell is
allowed to vary then ions constituting the framework may indeed cross MD cell boundaries causing the
aforementioned problems.

Figure 1 shows the maximum relative force error of the Ewald method for different accuracy parameters
ε compared to the Ewald method with accuracy parameterε = 10−18 (see Eqs. (8-10)) under periodic
boundary conditions. There was no significant improvement for smallerε, which is obvious, due to machine
precision of order10−16. The maximum relative error of the Ewald implementation compared against the
direct method in vacuum is less than10−15 with an accuracy parameterε = 10−18 and a unit MD cell108

times larger than the minimal bounding box of particles. Figure 2 illustrates the corresponding normalized
run-time. Figure 3 shows excellent energy conservation with a maximum relative force error of order10−10.
Moldy [18] was also used for further validation.

Choice of parameters

The accuracy and performance of the Ewald summation is governed by the splitting factorα, the real- and
reciprocal-space term cutoffsrc andkc, and the accuracyε. The splitting parameterα defines how fast
the sums converge and defines the cutoffsrc andkc for a given accuracyε. For most applications,rc is
small enough such that~n ∈ {~0}, which also simplifies the sum for the real-space term. Both the real- and
reciprocal-space term converge rapidly, such that only a few terms need to be considered. For the real part
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Figure 1: The maximum force error for a
given accuracy parameterε.
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Figure 2: Normalized run-time for a given
accuracy parameterε.

only terms satisfying|~xij + ~n| < rc are included, whereas for the reciprocal part only summands with
|~k| < kc are evaluated.

From Eq. (5) it is obvious that for a given accuracy and a fixedα the required work scales asO(N2)
for the reciprocal term and asO(N) for the real term. To achieve an overall work complexity ofO(N

3
2 ), α

must vary withN

α = c
√

π

(
N

V 2

) 1
6

(8)

rc =
√
− ln ε

α
(9)

kc = 2α
√
− ln ε . (10)

Here,V is the volume and the constantc determines the ratio of execution time of the real and reciprocal
term, which may vary from one platform to another. The standard Ewald summation is unsurpassed for very
high accuracy. It is relatively easy to implement and the desired accuracy can be increased and controlled
up to machine precision without any additional programming effort (see Figure 1). Due to these excellent
properties, the Ewald method is often used as reference for the evaluation of other methods with periodic
boundary conditions. A more detailed discussion for the optimal choice ofα and more accurate error
estimates can be found in [4, 7, 14, 17].

1.2 Mesh-based Ewald methods (PME)

The mesh-based Ewald methods approximate the reciprocal-space term of the standard Ewald summation
by a discrete convolution on an interpolating grid, using the discrete Fast-Fourier transforms (FFT). By
choosing an appropriate splitting parameterα, the computational cost can be reduced fromO(N

3
2 ) to

O(N log N). The accuracy and speed are additionally governed by the mesh size and the interpolation
scheme, which makes the choice of optimal parameters more difficult. At present, there exist several im-
plementations based on this idea, but they differ in detail. In [4] three essential methods are compared
and summarized: particle-particle-particle-mesh [9] (P3M), particle-mesh Ewald [2] (PME) and smooth
particle-mesh Ewald [5] (SPME).

Unfortunately, the mesh-based Ewald methods are affected by errors when performing interpolation,
FFT, and differentiation [17]. However, it would be misleading to infer that these methods sacrifice accuracy
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in favor of run-time performance.
For the fast mesh-based Ewald methods, there exists a critical numberN∗ such that they are faster

than the standard Ewald method forN > N∗, due to the fact of better scaling. In [13], the computational
efficiency and accuracy with 2-dimensional periodic boundary conditions for 3-dimensional systems are
discussed.

PROTOMOL supports PME with a generic interpolation scheme interface of arbitrary order. Actually,
B-splines and Hermitian interpolation are implemented. The real, reciprocal and correction term can be
evaluated separately, as for the standard Ewald implementation. The real term can be modified by a generic
switching function. The implementation supports parallelism (range computation) for the real and correction
terms. The work of the reciprocal term cannot be distributed in the actual implementation.

The maximum relative error of the PME method compared against the standard Ewald summation is
less than2 · 10−14. Both methods used an accuracy parameterε = 10−18. The PME was defined with mesh
size of 0.1̊A, cutoff in real-space partrc = 10, and B-splines of order 12. Figure 3 shows excellent energy
conservation with a maximum relative force error of order10−5. NAMD2 [10] was used to validate the
results.

1.3 Parameter Values

Both the real- and reciprocal-space series (the sums overn andk) converge fairly rapidly so that only a few
terms need be evaluated. We define thecut-off distancesrc andkc so that only terms with|xij + n| < rc

and|k| < kc are included. The parameterα determines how rapidly the terms decrease and the values ofrc

andkc needed to achieve a given accuracy.
For a fixedα and accuracy the number of terms in the real-space sum is proportional to the total number

of sites,N but the cost of the reciprocal-space sum increases asN2. An overall scaling ofN
3
2 may be

achieved ifα varies withN . This is discussed in detail in an excellent article by David Fincham[]. The
optimal value ofα is

α =
√

π

(
tR
tF

N

V 2

) 1
6

(11)

wheretR andtF are the execution times needed to evaluate a single term in the real- and reciprocal-space
sums respectively. If we require that the sums converge to an accuracy ofε = exp(−p) the cutoffs are then
given by
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rc =
√

p

α
(12)

kc = 2α
√

p (13)

A representative value oftR/tF specific to PROTOMOL has been established as 5.5. Though this will
vary on different processors and for different potentials its value is not critical since it enters the equations
as a sixth root.
It must be emphasized that therc is used as a cutoff for the short-ranged potentials as well as for the elec-
trostatic part. The value chosen abovedoes nottake the nature of the non-electrostatic part of the potential
into account. It is therefore the responsibility of the user to ensure thatrc is adequate for this part too.

In case of Particle-Mesh Ewald sum, the reciprocal term is computed by a Fourier transform. The cutoff
rc, α andε are chosen such as

erfc(αrc)
rc

= ε (14)

.

2 Input parameters

This sections gives the definition of the plain Ewaldc for PROTOMOL .

2.1 General syntax plain Ewald

PROTOMOL expects the following input plain Ewald:

Coulomb -algorithm FullEwald -real -reciprocal -correction
-alpha <real=-1>
-accuracy <real=1e-05,positive>
-j <real=3,positive> # Vacuum

, where=valuedefines the default value, i.e. optional input.
Note thatCoulomb can be replaced by a new, user defined potential, which is of the formcra, wherec is
a constant andr is the distance between particle pairs. For the Lennard-Jones potential a new template is
required due to the sum in the potential definition. ’-j <real=3> ’ is only available for vacuum.

2.2 Real space term

The flag-real emphasizes the computation of the real space term.

2.3 Reciprocal space term

The flag-reciprocal emphasizes the computation of the reciprocal space term.

2.4 Correction space term

The flag-correction emphasizes the computation of the resting terms in Eq. 5: point self term, intra-
molecular self term, charged system term and surface dipole term. Note that the surface dipole term is not
considered in the actual implementation.
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2.5 Switching function

The switching function is by default an ordinary cutoff. If an other switching function is required, one must
register the corresponding prototype in the according factory.

2.6 Accuracy

The optional parameter-accuracy <real> defines the accuracy of the splitting. By default PROTO-
MOL will use an accuracy of1e− 06.

2.7 Splitting of the sum – alpha

The optional parameterα (-alpha <real> ) determines how rapidly the terms decrease and the values of
cutoff (real space term)rc and lattice cutoff (reciprocal space term)kc needed to achieve a given accuracy.
α is the so-called splitting parameter of the Ewald summation.α ∈ (0, 1), where0+ and1− means only real
space or reciprocal space term, respectively. By default PROTOMOL will compute depending on the cutoff
and for the given accuracy, Eq. 10,14.

2.8 J – expansion factor for vacuum

In order to make PME work with vacuum we add a shell around the actual simulation box (bounding box of
all particles) to be able to use PME together with periodic boundary conditions. With a large enough shell
we can mimic vacuum. By default PROTOMOL will use a factor of 3, which means it will add 1 simulation
boxes in each dimension (see Fig. 5), or in other words expanding the simulation box by a factor 3.

Figure 5: Example of expansion factor of 3 in 2d.

2.9 Compilation

For experimental purpose the Ewald has several conditional compilation flags.
DEBUGPMETIMING Printing the different timings

DEBUGPMEENERGIES Printing the different energy contributions
USEPMEEXACTSOLUTION Using the exact solution of erf() in the real part

2.10 General syntax PME

PROTOMOL expects the following input for PME:

Coulomb -algorithm PMEwald -correction -interpolation BSpline
-gridsize <uint,positive> <uint,positive> <uint,positive>
-cutoff <real,positive>
-order <uint=4,positive>
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-accuracy <real=1e-06,positive>
-alpha <real=-1>
-j <real=3>

, where=valuedefines the default value, i.e. optional input.
Note thatCoulomb can be replaced by a new, user defined potential, which is of the formcra, wherec is
a constant andr is the distance between particle pairs. For the Lennard-Jones potential a new template is
required due to the sum in the potential definition. ’-j <real=3> ’ is only available for vacuum.

2.11 Real space term

The flag-real emphasizes the computation of the real space term.

2.12 Reciprocal space term

The flag-reciprocal emphasizes the computation of the reciprocal space term.

2.13 Correction space term

The flag-correction emphasizes the computation of the resting terms in Eq. 5: point self term, intra-
molecular self term, charged system term and surface dipole term. Note that the surface dipole term is not
considered in the actual implementation.

2.14 Interpolation

-interpolation defines the interpolation scheme between the grids the particle level. For the moment
PROTOMOL does only accept b-splines interpolation (BSpline ). Other interpolations like Hermitian
(Hermite ) did not improve the accuracy.

2.15 Switching function

The switching function is by default an ordinary cutoff. If an other switching function is required, one must
register the corresponding prototype in the according factory.

2.16 Gridsize

-gridsize <uint,positive> <uint,positive> <uint,positive> defines the grid for the
reciprocal space term using FFT. The grid size should be shosen such that

ni = cei

(
N

V

) 1
3

(15)

is satisfied for somec.

2.17 Cutoff

-cutoff <real> defines the cutoff of the real space term.
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2.18 Order

The optional parameter-order defines the interpolation order. The interpolation order must be even,
where 4 and 6 stand for acubicandquintic interpolation respectively. By default PROTOMOL will use 4th
order interpolation.

2.19 Accuracy

The optional parameter-accuracy <real> defines the accuracy of the splitting. By default PROTO-
MOL will use an accuracy of1e− 06.

2.20 Splitting of the sum – alpha

The optional parameterα (-alpha <real> ) determines how rapidly the terms decrease and the values of
cutoff (real space term)rc and lattice cutoff (reciprocal space term)kc needed to achieve a given accuracy.
α is the so-called splitting parameter of the Ewald summation.α ∈ (0, 1), where0+ and1− means only real
space or reciprocal space term, respectively. By default PROTOMOL will compute depending on the cutoff
and for the given accuracy, Eq. 1014.

2.21 J – expansion factor for vacuum

In order to make PME work with vacuum we add a shell around the actual simulation box (bounding box of
all particles) to be able to use PME together with periodic boundary conditions. With a large enough shell
we can mimic vacuum. By default PROTOMOL will use a factor of 3, which means it will add 1 simulation
boxes in each dimension (see Fig. 5), or in other words expanding the simulation box by a factor 3.

2.22 Compilation

For experimental purpose the Ewald has several conditional compilation flags.
DEBUGPMETIMING Printing the different timings

DEBUGPMEENERGIES Printing the different energy contributions
USEPMEEXACTSOLUTION Using the exact solution of erf() in the real part
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