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Abstract

We present a How-To manual for the Molecular Dynamics (MD) simulation engine, PROTOMOL . This
manual is intended to function as a guide to extending the framework to encapsulate new models, i.e. for
phase space propagation, force calculations, etc. It is thus a middle tier between simply running the software
for which the User Guide is sufficient, and developing the software where the Programmers Guide is helpful.

PROTOMOL makes extensive use of the Factory [3] design pattern for framework extensions, which
allows most extensions to be encapsulated within a single class addition. We explain how these simple
extensions should be designed, for the purposes of several different types of features.
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Chapter 1

Introduction

Molecular Dynamics (MD) describes a molecular system as a function of time based on integration of
equations of motion and interacting forces. PROTOMOL employs many techniques for attacking the most
expensive part of MD simulations in the nonbonded force calculations, including implementation of fast
algorithms, library optimizations and parallelism. However, PROTOMOL has also been carefully designed
to ensure extensibility of the framework for new model encapsulation. The framework makes use of object-
oriented programming and design patterns to accomplish this. As a result, many extensions can be en-
capsulated by the addition of a single class and minor one-line modifications to other source files in the
framework.

There are several extensions that could be made to an MD framework. We describe how to accomplish
four useful types of extensions. These deal with: (1) adding new integrators, or methods for propagating
a molecular system with time, (2) adding new forces, which should be calculated within an integrator to
propagate the system and can be bonded or nonbonded, (3) adding new integrator modifiers to be invoked at
certain points in the integration scheme, (4) adding new outputs, and (4) adding new topologies or structures.
We also explain how to reference each of these extensions in the PROTOMOL configuration file, once the
framework has been compiled and linked with the new extensions.
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Chapter 2

Adding a New Integrator

The responsibility of MD integrators is to propagate a molecular system with time. That is, given a set of
atomic position and velocity vectors (P, V ), applying an integrator Ψ results in an updated set (P ′, V ′):

(p′,v′) = Ψ(p,v)

Or more generally, we can refer to phase space as the collection of atomic positions and momenta
Γ = (p,q) and use an integrator to move to a new phase space Γ′.

Γ′ = Ψ(Γ)

The propagator function Ψ involves calculating all forces. There are several different types of forces
which can be accounted for in a molecule, i.e. bond stretching, angle or torsion rotations, van der Waals,
electrostatic, etc. Some of these, like stretching or rotations, are bonded forces because they occur among
atoms which are connected by bonds. Others, such as van der Waals and electrostatic, are nonbonded forces.
Once a force vector is calculated for all atoms, it can be used to update atomic velocities and positions by
solving Newton’s equations. For example, accelerations are obtainable through knowledge of atomic forces
and masses, which can subsequently be used to determine velocities by multiplying by a timestep ∆t.
Positions can be updated through another multiplication of this timestep.

Integration of a molecular system can have multiple hierarchies. Not all intramolecular motion occurs
at the same timescale. For example, bond motion is extremely fast, operating on the order of femtoseconds.
However, significant performance can be saved by evaluating nonbonded forces less frequently. Since these
forces change less significantly, there is only slight accuracy loss by holding them constant while short-range
forces are evaluated. This brought about the idea of multiple-timestepping (MTS), which involves multiple
integrators. In a simple case, a 2-level MTS scheme will include 2 integrators: Ψ1 to evaluate short-range
forces and Ψ2 for longer range. Ψ2 would then calculate its own forces and update its own positions and
velocities, then invoke Ψ1 within a loop, at each iteration Ψ1 would calculate short-range forces and update
its positions and velocities. In this way, forces associated with Ψ1 get evaluated more frequently than those
associated with Ψ2. This of course can be extended to encapsulate several integrators to form a chain or
hierarchy.

Adding a new integrator to the PROTOMOL framework involves the following steps:

1. Change to the directory framework/integrators.

2. Create a new class, called <integrator name>Integrator.
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3. Decide if this integrator should be an innermost integrator in a hierarchy. If yes, inherit from the class
STSIntegrator. Otherwise, there are two options. You can inherit from MTSIntegrator, or
if you want mollification [4] in your integrator which improves stability by eliminating slow force
portions in the direction of already computed fast forces, inherit from the special integrator MOL-
LYIntegrator. If you are unfamiliar with mollification or do not want to use it, we recommend
inheriting from MTSIntegrator.

4. Each integrator should define the following data members:

• A static const std::string keyword. This should represent the configuration file
reference for this new integrator, and should be initialized in the implementation file (.cpp),
with a line like the following:
const string <integrator name>Integrator::keyword("<integrator name>");

• Any ’special’ parameters unique for your integrator. Thus this excludes timestep, positions,
velocities, etc.

5. Each integrator should define the following methods:

• A default constructor. If you have no extra parameters, this can just be a call to the parent default
constructor; either STSIntegrator(), MTSIntegrator() or MOLLYIntegrator().
Otherwise extra parameters should be initialized properly.

• A constructor which accepts parameters. If this integrator is STS, the parameters are minimally
a timestep of type Real and a ForceGroup *overloadedForces. If the integrator is
MTS or MOLLY, change the first parameter to int cycles and in addition pass a parameter
StandardIntegrator *nextIntegrator. This is if the integrator does not define any
extra parameters. If there are no extra parameters the parent constructor can simply be called
with these parameters and the function body can be empty. If there are extra parameters, they
should be placed after parameter one (timestep or cycles), and be initialized accordingly
within the function body.

• A method initialize(), which accepts the following parameters: GenericTopology
*topo, Vector3DBlock *positions, Vector3DBlock *velocities, and
ScalarStructure *energies. This method should include any functionality that should
be invoked once for this integrator before the simulation runs. Most often it can just contain the
following two lines (substitute MTS and MOLLY for STS if necessary):
STSIntegrator::initialize(topo, positions, velocities, energies);
initializeForces()
which tells the integrator to set the structural, phase space and energy information for the system
and initialize all forces according to this information.

• A method run() which accepts a single integer argument for the number of steps to run. This
is the point where the algorithm is implemented. Positions, forces, and velocities are accessed
through arrays myPositions,myVelocities and myForces; to access data for a specific
atom, pass the atom number (i.e. myPositions[0] to access the first atom’s positions).
Timesteps can be accessed through the method getTimestep(), implicitly defined for all
integrators. Mass for a particular atom can be accessed through the topology, i.e. myTopo-
>atoms[i].scaledMass for the first atom.

• A method doMake() which creates the integrator object. For STS, this method accepts three
parameters: a string&, a const vector<Value>& values, and a ForceGroup*
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fg. For MTS or MOLLY, the method will take one more parameter StandardIntegra-
tor *nextIntegrator. The method will return an STSIntegrator*, MTSIntegra-
tor* or MOLLYIntegrator*. The values vector will hold all parameters, beginning with
timestep (for STS) and cycles (for MTS or MOLLY), followed by extras. The function
need only contain one return statement in the body, to return a new object by calling the
constructor with appropriate parameters. For example, for an MTS integrator, with one extra
parameter:
return new <integrator name>Integrator(values[0], fg, nextIntegrator);

• If extra parameters are necessary, a const method getParameters() should be defined,
whose only formal parameter is a vector<Parameter>& parameters. This method de-
fines all extra parameters, how they should be referenced in the configuration file, any constraints
on their values, and any default values. The first line should be a call to getParameters()
of the parent STSIntegrator, MTSIntegrator, or MOLLYIntegrator. To show by
example, suppose you are constructing an STS integrator with one extra parameter for the tem-
perature. Temperature should be non-negative, of course. In addition, you want its default value
to be 300. The body of this function would appear as follows:
STSIntegrator::getParameters(parameters);
parameters.push back(Parameter("temperature",
Value(myLangevinTemperature,ConstraintValueType::NotNegative()),
300));

• Auxiliary methods and variables can be defined as necessary to be used internally by the inte-
grator, we recommend that all these be defined as private. However, the above are all of the
requirements to add a new integrator to the framework. You may also find it useful to refer to
any of the integrators within the directory as a template, just to get a feel for their structure. For
a description of configuration file integrator definitions, please refer to the PROTOMOL User
Guide.

6. Modify Makefile.am in the same directory, and add the new .cpp and .h files under the appro-
priate macros (it should be clear).

7. Modify framework/factories/registerIntegratorExemplars.cpp to include a call
to the newly created integrator, as follows:
IntegratorFactory::registerExemplar(new <Integrator name>Integrator());

2.1 Example: Nosé Poincare

The Nosé Poincare propagation scheme [2] is a single-timestepping method based on a Hamiltonian which
has been extended with an additional degree of freedom, or thermostat. This Hamiltonian is represented by
the following equation:

H = (
∑

i

p2
i

2mis2
+ V (q) + gkT lns − H0)s, (2.1)

where H0 is a constant, chosen such that the Hamiltonian is zero at the initial conditions. s is an
extended position variable (from Nosé dynamics) and π is its canonical momenta. p is the canonical
momenta associated with current positions, such that p = ps where p is the real momenta. T is temperature
and k is Boltzmann’s constant, and g is equal to the number of degrees of freedom in the system.

6



Bond et al. present a symplectic and time-reversible integration scheme which we implement in PRO-
TOMOL as a new STS integrator. This is given by the following equations:
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Equation 2.3 is implicit an requires solving the following equation using the quadratic formula:

∆t

4Q
(πn+1/2)2 + πn+1/2 + C = 0, (2.8)

where

C =
∆t

2
(gkT (1 + lnsn) −

∑

i

( p
n+1/2
i )2

2mi(sn)2
+ V (qn) − H0) − πn (2.9)

We solve these equations in the integrator we add to PROTOMOL . We allow the user to specify the
temperature to run the method T, the canonical momenta associated with s in myPi, the canonical momenta
associated with the current position in myS and the extended mass Q in myQ, which is typically made small
to increase sample speed. In the header file, we include STSIntegrator.h since we are adding a new
single-timestepping integration scheme. We define a new class NosePoincareIntegrator inheriting
from STSIntegrator and declare two constructors, one a default which does nothing and the second
accepting five user parameters (the four mentioned plus the timestep of the integrator, which is necessary for
all STS schemes). We then declare getParameters()which will later populate an array with values of
these five parameters from the PROTOMOL configuration file, and getParameterSize()which returns
5 since there are five parameters. The final two publicly defined methods we declare are initialize()
and run(). All integrators must define these. We define a privately used method doMake() which
accepts configuration file values from the user and returns a new NosePoincareIntegrator object,
parameterized properly.

Since myTimestep is implicitly defined for all integrators which inherit from STSIntegrator, we
only have to define data members for the other four user parameters. However, we also choose to define
three other utility parameters myPot, myH0 and myGKT. These will hold commonly used identifiers in the
above equations, to avoid code repetition and decrease complexity. Finally, we publicly define a keyword
data member which will hold the unique identifier for this integrator in the PROTOMOL configuration file.
Before deciding on what this value should hold, all other integrators in the framework/integrators
directory should be checked accordingly to ensure no keyword conflicts.
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#ifndef NOSEPOINCAREINTEGRATOR_H
#define NOSEPOINCAREINTEGRATOR_H

#include "STSIntegrator.h"

namespace ProtoMol {

class ScalarStructure;
class ForceGroup;

class NosePoincareIntegrator : public STSIntegrator {

public:
NosePoincareIntegrator() {}
NosePoincareIntegrator(Real timestep,

Real temperature,
Real pi,
Real s,
Real q);

virtual void getParameters(std::vector<Parameter>& parameters) const;
virtual unsigned int getParameterSize() const{return 5;}
virtual void initialize(GenericTopology *topo,
Vector3DBlock *positions,
Vector3DBlock *velocities,
ScalarStructure *energies);
virtual void run (int numTimesteps);

static const std::string keyword;

private:
virtual STSIntegrator* doMake(std::string& errMsg,

const std::vector<Value>& values,
ForceGroup* fg)const;

Real myNPTemperature;
Real myPi;
Real myS;
Real myQ;

Real myPot;
Real myH0;
Real myGKT;

};

}

In the implementation file, we define all member methods of the class NosePoincareIntegrator.
We first set the keyword data member, indicating that use of this propagation scheme should be indicated
by NosePoincare in the integrator definition of the PROTOMOL configuration file. We then define the
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parameterized constructor and set all member variables that are user-defined from the configuration file.
We then define the initialize() routine. Usually integrators will need to initialize atomic forces

as a first step, which can be accomplished by invoking the method initializeForces() once. We
then set our utility variables. myPot is set to the initial potential energy, myH0 to the initial total energy
(potential + kinetic, satifsying Equation 2.1 above), and myGKT to the number of degrees of freedom times
the Boltzmann constant times the user-specified temperature, subsequently representing the term gkT in the
above equations.

In our implementation of run(), velocities are initially updated with a Leapfrog half-kick. We then
obtain the value of C in the above equations and store it in tempC, then use it to update the canonical
momenta of s, then update s itself. Then positions are updated, followed by another update of the canonical
momenta of s, and a final Leapfrog half-kick on velocities.

The method getParameters() inserts the PROTOMOL configuration file keywords for the four user-
defined parameters into the parameters array along with the corresponding data members of the class
NosePoincareIntegrator. We constrain temperature to be non-negative. Subsequently, when these
keywords are found by the PROTOMOL configuration file reader their values will be assigned to data mem-
bers accordingly when a NosePoincareIntegrator object is created. This is done by doMake(),
which returns a call to the parameterized constructor. User-defined parameters are contained in the formal
parameter array values, in the order they were inserted in getParameters(). In an STS integrator,
the timestep is implicitly the first parameter, followed by all user-defined parameters.

#include "NosePoincareIntegrator.h"

const string NosePoincareIntegrator::keyword( "NosePoincare" );

NosePoincareIntegrator::NosePoincareIntegrator(Real timestep,
Real temperature,
Real pi,
Real s,
Real q) :

myTimestep(timestep),
myNPTemperature(temperature),
myPi(pi),
myS(s),
myQ(q) {}

void NosePoincareIntegrator::initialize(GenericTopology *topo,
Vector3DBlock *positions,
Vector3DBlock *velocities,
ScalarStructure *energies)

{
initializeForces();
myPot = energies->potentialEnergy();
myH0 = myPot + kineticEnergy(topo,velocities);
myGKT = 3.0*(positions->size()-1.0)*Constant::BOLTZMANN*myNPTemperature;

}

void NosePoincareIntegrator::run(int numTimesteps)
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{
int step = 1;

while (step < numTimesteps)
{

Real h = getTimestep() * Constant::INV_TIMEFACTOR;
for (unsigned int i = 0; i < myVelocities->size(); i++)

(*myVelocities)[i] += (*myForces)[i] * h / myTopo->atoms[i].scaledMass;
Real tempC = 0.5*h*(myGKT*(1.0 + log(myS))

- kineticEnergy(myTopo,myVelocities)+myPot-myH0)-myPi;
myPi = -2*tempC / (1.0 + sqrt(1.0 - tempC*h/myQ));
Real mySold = myS;
Real tempF = 0.5*h*myPi/myQ;
myS *= (1.0 + tempF)/(1.0 - tempF);
for (unsigned int i = 0; i < myPositions->size(); i++)

(*myPositions)[i] += (*myVelocities)[i]*mySold*0.5*h*
(1.0/myS+1.0/mySold);

calculateForces();
myPot = myEnergies->potentialEnergy();
Real tempS = mySold/myS;
tempS *= tempS;
myPi += 0.5*h*(kineticEnergy(myTopo,myVelocities)*tempS-myGKT*

(1.0+log(myS))-myPot+myH0-0.5*myPi*myPi/myQ);
tempS = mySold/myS;
for (unsigned int i = 0; i < myVelocities->size(); i++)

(*myVelocities)[i] = (*myVelocities)[i]*tempS
+ myForces*0.5*h/myTopo->atoms[i].scaledMass;

step = step + 1
}

}

void NosePoincareIntegrator::getParameters(vector<Parameter>& parameters)
const {

STSIntegrator::getParameters(parameters);
parameters.push_back(Parameter("temperature",

Value(myNPTTemperature,ConstraintValueType::NotNegative())));
parameters.push_back(Parameter("pi"), Value(myPi));
parameters.push_back(Parameter("s"), Value(myS));
parameters.push_back(Parameter("q"), Value(myQ));

}

STSIntegrator* NosePoincareIntegrator::doMake(string&,
const vector<Value>& values,ForceGroup* fg)const{

return new
NosePoincareIntegrator(values[0],values[1],values[2],

values[3],values[4],fg);
}
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2.2 Example: LN

The LN algorithm is based on the combination of force splitting and Langevin Dynamics [6]. PROTOMOL

has a single-timestepping Langevin impulse scheme, which can be used to evaluate fast forces. The outer
slow force evaluation calculates the slow forces and updates atomic positions by a half-kick. Thus, the LN
scheme is based on Position Verlet over Velocity Verlet, for reasons of stability in large timescale operations.

The header file is set up in exactly the same fashion, except that the integrator inherits from STS instead
of MTS, and defines an integer cyclelength and opposed to timestep. As in STS integrators with
the timestep, the cyclelength is implicitly defined as the first parameter for an MTS scheme. Also, the
constructor must accept one extra parameter, for the next integrator in the hierarchy (when using LN, this
will most often be PROTOMOL ’s LangevinImpulse. Illustrating this through the class declaration and
constructor:

class LNIntegrator : public MTSIntegrator
{

...

public:
LNIntegrator(int cycles,

ForceGroup* overloadForces,
StandardIntegrator* nextIntegrator);

...

}

In initialization, MTS integrators must also initialize their inner integrator(s). Similarly, these in-
ner integrators must be run at some point in the run() method to ensure that faster forces are evalu-
ated appropriately and at the right times. In initialize(), this can all be saved through a call to
MTSIntegrator::initialize() and passing the same four parameters: topology, atomic posi-
tions and velocities, and energies. In our run() routine, we update positions, calculate slow forces and
then run the next integrator. The next integrator is stored in the variable myNextIntegrator, and
the MTS integrator implicitly defined parameter myCycleLength gets passed as the number of steps.
getParameters() and doMake() are specified similarly for MTS and STS, as is the keyword, so we
leave them out here. We show the initialize() and run() methods:

void LNIntegrator::initialize(GenericTopology *topo,
Vector3DBlock *positions,
Vector3DBlock *velocities,
ScalarStructure *energies){

MTSIntegrator::initialize(topo, positions, velocities, energies);
initializeForces();

}
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void LNIntegrator::run(int numSteps) {
int step = 1;

while (step < numTimesteps) {
for (unsigned int i = 0; i < myPositions->size(); i++)

(*positions)[i] += getTimestep()/2 * (*velocities)[i];
calculateForces();
myNextIntegrator->run(myCycleLength);
step++;

}
}
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Chapter 3

Adding a New Force

In an MD simulation, forces can in general be grouped into two subclasses: Bonded and Nonbonded. The
former occurs between atoms which are connected in some fashion by bonds. These forces are thus short-
range and associated motion tends to be faster. Examples include bond stretching and angle or torsion
rotation forces. Nonbonded forces like van der Waals and electrostatic can occur between atoms which are
not connected by bonds and are thus long range.

Adding a force to PROTOMOL involves the following steps:

1. Create a new class, called <force name>Force. Decide if the force should operate on just posi-
tions (a system force) or on unprocessed positions and velocities (an extended force). If the for-
mer is true, inherit from SystemForce and <force name>ForceBase. If the latter is true,
inherit from ExtendedForce. If the force is bonded, template the class using one parameter:
TBoundaryConditions. If the force is nonbonded, template the class using minimally two pa-
rameters: TBoundaryConditions and TCellManager. If the force is nonbonded and requires
a cutoff, template a third parameter TSwitchingFunction.

2. Create a void method evaluate(), which accepts minimally four arguments:

• const GenericTopology* topo

• const Vector3DBlock* positions

• Vector3DBlock* forces

• ScalarStructure* energies

If you are created an extended force, a fifth argument const Vector3DBlock* velocities
should be placed between positions and forces. positions is a vector of atomic coordinate
positions, and forces is the corresponding vector of forces. This vector should be modified by
evaluate() to update atomic forces. topo and energies include data that can be helpful for
force calculations, for their interfaces view framework/topology/GenericTopology.h and
framework/base/ScalarStructure.h.

3. Create a void method parallelEvaluate(), which accepts the same arguments. If you are
running in parallel and have an algorithm to evaluate this force in parallel, you can implement it here.
PROTOMOL employs the Message Passing Interface (MPI) for parallel execution. AngleSystemForce
provides an example where every angle is evaluated on a separate processor if possible, or if there are
too few processors as much parallelism is exploited as possible. Two useful routines are Parallel::next()
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and Parallel::getAvailableNum(). The latter returns the number of processors on which
PROTOMOL is currently running, and Parallel::next() can be a conditional clause which sur-
rounds a block of code that should be executed on individual CPUs in parallel (again, see AngleSystemForce).
If there is nothing special that should be done for this force when running in parallel, simple include
an invocation of evaluate() in the function body.

4. Define any helper variables for calculating this force in the class header. This includes any variables
that the user should be able to define in the configuration file.

5. Define a method getParameters(), which is const and returns void. This method should
accept one argument: a vector<Parameter>& parameters. The purpose of this method is
to designate how parameters for this force should be referenced in the configuration file, their data
types, constraints and default values. For example, suppose we wanted to define a data member
myAlpha for this force, and have it initialized in the configuration file using the tag "-alpha".
And we wanted to constrain the value to be positive with a default of 1.0. This can be accomplished
by adding the following line to this function body:
parameters.push back(Parameter("-alpha",Value(myAlpha,

ConstraintValueType::Positive()),1.0));
The constraints and default values can be left out if they are non-applicable for a parameter.

6. A method doMake()which accepts two parameters. The first is a string & for an error message,
and the second a vector<Value> values. This method should also be const but this time
should return a Force*. The error message string can be modified within the function, if a parameter
violates some sort of constraint. If a constraint was programmed into the above getParameters()
method, that can simply be checked by a call to values[i].valid() where i is some integer.
values is an array which stores user-specified configuration file values for all parameters registered
in the getParameter()method. This function should return a call to the constructor for this force,
passing all parameters from values. For example if there are two configuration file parameters for
this force, the return statement should be:
return new <force name>Force(values[0], values[1]);

7. Create a default constructor, which sets default values for all member variables.

8. Create a constructor which accepts as arguments all parameters that the user should specify in the
configuration file. Set the corresponding member variables.

9. Create a destructor that cleans up an dynamically allocated memory, if this does not apply it can be
empty.

10. Create a class <force name>ForceBasewith one single data member, a static const string
keyword.

11. In the implementation file for this class, insert the line:
const string <force name>ForceBase::keyword("<force name>");
This allows the newly created force to be referenced by the passed keyword in the configuration file.

12. Modify Makefile.am in the same directory, and add the new .cpp and .h files under the appro-
priate macros (it should be clear).

13. Register the new force with a PROTOMOL force factory. For a bonded force, change to the directory
framework/factories and find the file registerForceExemplarsBonded.cpp. You
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will find two methods there, one which accepts periodic boundary conditions and the other accepts
vacuum. To the first method, add the line:
ForceFactory::registerExemplar(

new <force name>Force<PeriodicBoundaryConditions>());
And to the second:
ForceFactory::registerExemplar(

new <force name>Force<VacuumBoundaryConditions>());
For a nonbonded force, change to the directory framework/forcesand find the file registerForceExemplarsOther.cpp.
You will find two methods there, one which accepts periodic boundary conditions and the other ac-
cepts vacuum. To each of these methods, addd enough calls to registerExemplars() to cover
all possible template parameters. For TCellManager, there is only one build into PROTOMOL cur-
rently, CubicCellManager. For switching functions, PROTOMOL supports UniversalSwitchingFunction
(no cutoff), C1SwitchingFunction (continuous first derivative), C2SwitchingFunction
(continuous second derivative), ShiftSwitchingFunction (shifting the force by a constant
to avoid sudden changes [6]), and CutoffSwitchingFunction (a simple cutoff, no smooth-
ing). Also available are CnSwitchingFunction (accepts an arbitrary n) for its smoothness, and
CmpCnCnSwitchingFunction for its complement. So for example, if the new force is non-
bonded and compatible with only universal, C1 and C2 switching functions, add the following lines
to the first method (which accepts periodic boundary conditions):

new <force name>Force<PeriodicBoundaryConditions, CubicCellManager,
UniversalSwitchingFunction>());

new <force name>Force<PeriodicBoundaryConditions, CubicCellManager,
C1SwitchingFunction>());

new <force name>Force<PeriodicBoundaryConditions, CubicCellManager,
C2SwitchingFunction>());
And to the second method (accepting vacuum boundary conditions):

new <force name>Force<VacuumBoundaryConditions, CubicCellManager,
UniversalSwitchingFunction>());

new <force name>Force<VacuumBoundaryConditions, CubicCellManager,
C1SwitchingFunction>());

new <force name>Force<VacuumBoundaryConditions, CubicCellManager,
C2SwitchingFunction>());

3.1 Example: Morse Potential

In MD, the Morse potential [5] models negligible bond fluctuations around equilibrium states, represented
by the energy equation:

E(x) = D(1 − e−Sm(x−x̄))2 (3.1)

where Sm represents the width of the well, and D is a dissociation energy at which the Morse term levels
off for a large x.

By computing the negative gradient we obtain the force term:

F (x) = 2DSm[e−2Sm(x−x̄) − e−Sm(x−x̄)] (3.2)
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We now show how to add this term to PROTOMOL . We will create a new class, called MorseBondSystemForce.
The full implementation must reside in the header file MorseBondSystemForce.h, since the class will
be templated with the boundary conditions. We will implement this force both in serial and parallel and
thus define methods evaluate and parallelEvaluate, and an auxiliary method calcMorseBond
to be invoked by both methods which evaluates the Morse potential for a single bond passed as parameter
two, to avoid code replication. getParameterSize() in this case will return 2 (for Sm and D), ad
we define getParameters and doMake which will define how these parameters are represented in the
configuration file and how the object should be initialized. The class must inherit from SystemForce and
MorseBondSystemForceBase, a simple interface which we later define. We define both default and
parameterized constructors, setting the values for Sm and D accordingly.

In the implementation of calcMorseBond, we first need to know the current distance between the
two atoms in the bond being calculated. Thus we obtain the (x, y, z) coordinates of their two positions in
atom1 and atom2, and then compute a vector between these two positions, stored in x12. The Euclidean
distance, stored in x, is the normal of this vector. The magnitude of the force F is computed using the above
equation, with x̄ represented by the rest length of the current bond. We then set the forces on each atom by
scaling the magnitude of the Morse force by the position vector x12, and then updating the bond energy
with the above equation.

Our implementation of evaluate is simple. We obtain the boundary conditions from the topology
and then iterate through every bond in the molecular system, invoking calcMorseBond for each one.
For parallelEvaluate, we start the same way by obtaining the boundary conditions, but we now
want to optimally evaluate individual bonds on different processors. Ideally, we could submit one bond per
processor, but there may very well be more bonds than processors. Thus, we obtain the number of bonds
and store it in an integer n, and the minimum of either the number of processors available or the number of
bonds and store it in count. count thus represents the maximum number of parallel evaluations we can
execute. We then loop count times, and at each iteration a new processor becomes available, checked with
Parallel::next(). On that processor we evaluate a range of bonds, divided as even as possible based
on the value of count.

We set configuration file parameters by defining their tags and corresponding data members in getParameters
and sinvoking the parameterized MorseBondSystemForce constructor passing the parameters in the
correct order in doMake and returning the object.

#ifndef MORSEBONDSYSTEMFORCE_H
#define MORSEBONDSYSTEMFORCE_H

#include "SystemForce.h"
#include "MorseBondSystemForceBase.h"
#include "ScalarStructure.h"
#include "Parallel.h"

namespace ProtoMol {
template<class TBoundaryConditions>
class MorseBondSystemForce : public SystemForce,

private MorseBondSystemForceBase{
public:
MorseBondSystemForce() : mySm(0.0), myD(0.0) {}
MorseBondSystemForce(double sm, double d) : mySm(sm), myD(d) {}
virtual void evaluate(const GenericTopology* topo,

const Vector3DBlock* positions,
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Vector3DBlock* forces,
ScalarStructure* energies);

virtual void parallelEvaluate(const GenericTopology* topo,
const Vector3DBlock* positions,
Vector3DBlock* forces,
ScalarStructure* energies);

void calcMorseBond(const TBoundaryConditions &boundary,
const Bond& currentBond,
const Vector3DBlock* positions,
Vector3DBlock* forces,
ScalarStructure* energies);

virtual unsigned int getParameterSize() const{return 2;}
virtual void getParameters(std::vector<Parameter>&) const;

private:
virtual Force* doMake(std::string&, std::vector<Value>) const;
double mySm, myD;

};

template<class TBoundaryConditions>
inline void MorseBondSystemForce<TBoundaryConditions>::evaluate(

const GenericTopology* topo,
const Vector3DBlock* positions,
Vector3DBlock* forces,
ScalarStructure* energies)

{
const TBoundaryConditions &boundary =
(dynamic_cast<const SemiGenericTopology<TBoundaryConditions>& >(*topo))

.boundaryConditions;

for (unsigned int i = 0; i < topo->bonds.size(); i++)
calcMorseBond(boundary, topo->bonds[i], positions, forces, energies);

}

template<class TBoundaryConditions>
inline void MorseBondSystemForce<TBoundaryConditions>::calcMorseBond(

const TBoundaryConditions &boundary,
const Bond& currentBond,
const Vector3DBlock* positions,
Vector3DBlock* forces,
ScalarStructure* energies)

{
Vector3D atom1((*positions)[currentBond.atom1]);
Vector3D atom2((*positions)[currentBond.atom2]);
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Vector3D x12(boundary.minimalDifference(atom2,atom1));
Real x = x12.norm();

Real F = 2.0 * myD * mySm *
(exp(-2*mySm*(x - currentBond.restLength))
- exp(-mySm*(x - currentBond.restLength)));

(*forces)[currentBond.atom1] += x12*F;
(*forces)[currentBond.atom2] -= x12*F;

(*energies)[ScalarStructure::BOND] += myD*pow(
1 - exp(-mySm*(x - currentBond.restLength)), 2);

}

template<class TBoundaryConditions>
inline void MorseBondSystemForce<TBoundaryConditions>::parallelEvaluate(

const GenericTopology* topo,
const Vector3DBlock* positions,
Vector3DBlock* forces,
ScalarStructure* energies)

{
const TBoundaryConditions &boundary =
(dynamic_cast<const SemiGenericTopology<TBoundaryConditions>& >(*topo))

.boundaryConditions;

unsigned int n = topo->bonds.size();
unsigned int count = min(Parallel::getAvailableNum(),

static_cast<int>(topo->bonds.size()));
for(unsigned int i = 0;i<count;i++)
if(Parallel::next())
for (int j = (n*i)/count; j < min((n*(i+1))/count, n); j++)

calcMorseBond(boundary, topo->bonds[j], positions, forces, energies);
}

template<class TBoundaryConditions>
inline void MorseBondSystemForce<TBoundaryConditions>::getParameters(

std::vector<Parameter>&) const
{

parameters.push_back(Parameter("-Sm", Value(mySm)));
parameters.push_back(Parameter("D", Value(myD)));

}

template<class TBoundaryConditions>
virtual Force* MorseBondSystemForce<TBoundaryConditions>::doMake(std::string&,

std::vector<Value>) const
{

return MorseBondSystemForce(values[0], values[1]);
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}
}

#endif

We also must define the interface for MorseBondSystemForceBase. This as mentioned is a simple
class, defining a keyword by which the force is identified in the configuration file and recognized by the force
factory of PROTOMOL . We can call the keyword MorseBond. Thus the header and implementation files
appear as follows:
MorseBondSystemForceBase.h:

#ifndef MORSEBONDSYSTEMFORCEBASE_H
#define MORSEBONDSYSTEMFORCEBASE_H

#include<string>

namespace ProtoMol {
class MorseBondSystemForceBase {
public:
virtual ˜MorseBondSystemForceBase(){}
static const std::string keyword;

};
}
#endif

MorseBondSystemForceBase.cpp:

#include "BondSystemForceBase.h"
using std::string;

namespace ProtoMol {
const string BondSystemForceBase::keyword("MorseBond");

}

Finally, we add this force to the PROTOMOL source file
framework/factories/registerForceExemplarsBonded.cpp, adding it to the methods for
periodic and vacuum boundary conditions:
registerForceExemplarsBonded.cpp:

void registerForceExemplarsBonded(const PeriodicBoundaryConditions*){
...
ForceFactory::registerExemplar(

new MorseBondSystemForce<PeriodicBoundaryConditions>());
...

}
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void registerForceExemplarsBonded(const VacuumBoundaryConditions*){
...
ForceFactory::registerExemplar(

new MorseBondSystemForce<VacuumBoundaryConditions>());
...

}

3.2 Example: Pairlist Algorithm

Suppose we want to add an algorithm for all pairwise forces which restricts their computation to pairs of
atoms within a rectangular box with corners at r0 and rc. This can be done by implementing a special class
with four templates – one for the cell manager, the second for a pair of atoms, the third for an abstract
force class and the fourth for a specific implementation of the force class. This is shown below, in the
new class NonbondedRangeForce. NonbondedRangeForce inherits from the TForce template
parameter which represents the abstract pairwsise force class, along with NonbondedRangeForceBase
which is implemented analogous to MorseBondSystemForceBasewith a keyword as the data member
set in the implementation file. We can use the keyword NonbondedRange, to allow representation in the
configuration file as -algorithm NonbondedRange under LennardJones or Coulomb Force descriptions.

As an algorithm, the implementation contains a method doEvaluate() which only accepts two pa-
rameters - the first for the topology and the second for the number of atom pairs to evaluate n. getParameters()
and doMake() have special implemenations as well, a bit different from simply adding a new force. In
getParameters(), we obviously need values for myR0 and myRC, but we also need to invoke the atom
pair getParameters() method as well, as there may be further parameters to collect. In doMake(),
the force that is returned is an object of the specific implementation of the force class which was passed
in the template (parameter 4). Thus that doMake() is invoked, accepting as a parameter an invokation to
doMake() for the atom pair. This latter method can essentially be copied into any algorithm implemen-
tation. In addition, we provide two new data members: the first to contain atom pairs and the second an
enumerator which loops through all atom pairs, if periodic boundaries are used then all atom pairs within
one periodic cell.

In doEvaluate(), the opening section performs enumeration through all atom pairs within a cell,
and can be copied for any algorithm. The key statement for this algorithm is the condition which compares
atomic positions to the values of r0 and rc. If the positions of atoms i and j are within this range, calculations
are performed on the atom pair.

#ifndef NONBONDEDRANGEFORCE_H
#define NONBONDEDRANGEFORCE_H

#include "Force.h"
#include "NonbondedRangeForceBase.h"

namespace ProtoMol {
template<class TCellManager, class TOneAtomPair,

class TForce, class TImplForce>
class NonbondedRangeForce : public TForce,

private NonbondedRangeForceBase {
public:
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NonbondedRangeForce() : myR0(Vector3D(0.0,0.0,0.0)),
myRc(Vector3D(0.0,0.0,0.0)) {}

NonbondedRangeForce(Vector3D r0, Vector3D rC, TOneAtomPair oneAtomPair) :
TForce(), myR0(r0), myRC(rC), myOneAtomPair(oneAtomPair) {}

virtual std::string getKeyword() const {return keyword;}
virtual void getParameters(std::vector<Parameter>& parameters) const;
virtual unsigned int getParameterSize() const

{return 2+TOneAtomPair::getParameterSize();}

protected:
void doEvaluate(const GenericTopology* topo, unsigned int n);

private:
virtual Force* doMake(std::string& errMsg, std::vector<Value> values) const;
Vector3D myR0, myRC;
TOneAtomPair myOneAtomPair;
Topology<TOneAtomPair::BoundaryConditions, TCellManager>::Enumerator

enumerator;
};

template<class TCellManager, class TOneAtomPair, class TForce, class TImplForce>
void NonbondedRangeForce<TCellManager, TOneAtomPair,
TForce, TImplForce>::doEvaluate(const GenericTopology* topo, unsigned int n) {

////////////////////////////////////////////////
// COPY FOR ALL ALGORITHMS

Topology<TOneAtomPair::BoundaryConditions,
TCellManager>::Enumerator::CellPair thisPair;

unsigned int count = 0;
for (; !enumerator.done(); enumerator.next()) {
enumerator.get(thisPair);
bool notSameCell = enumerator.notSameCell();

if(!notSameCell){
count++;
if(count > n)
break;

}
////////////////////////////////////////////////
for(int i=thisPair.first; i!=-1; i=topo->atoms[i].cellListNext){
for(int j=(notSameCell ? thisPair.second:topo->atoms[i].cellListNext); j!=-1;

j=topo->atoms[j].cellListNext){
if ( (*(myOneAtomPair.myPositions)[i] <= myRc) &&

(*(myOneAtomPair.myPositions)[i] >= myR0) &&
(*(myOneAtomPair.myPositions)[j] <= myRc) &&
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(*(myOneAtomPair.myPositions)[j] >= myR0) )
myOneAtomPair.doOneAtomPair(i,j);

}
}

}
}

template<class TCellManager, class TOneAtomPair, class TForce, class TImplForce>
void NonbondedCutoffForce<TCellManager,TOneAtomPair,
TForce,TImplForce>::getParameters(std::vector<Parameter>& parameters) const {
myOneAtomPair.getParameters(parameters);
parameters.push_back(Parameter("-R0",Value(myR0)));
parameters.push_back(Parameter("-Rc",Value(myRc)));

}

template<class TCellManager, class TOneAtomPair, class TForce, class TImplForce>
Force* NonbondedCutoffForce<TCellManager,TOneAtomPair,
TForce,TImplForce>::doMake(std::string& errMsg,

std::vector<Value> values) const{
return ( new TImplForce(values[values.size()-1],

TOneAtomPair::make(errMsg,
std::vector<Value>(values.begin(),values.end()-1))));

}

#endif
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Chapter 4

Adding a New Modifier

The behavior of PROTOMOL integrators can be slightly changed or modified to encapsulate new function-
ality to be executed at specific points in time. As an example, Nose-Hoover dynamics requires computation
of a frictional force which is added to Newton’s equations of motion to establish atomic forces. MOLLY in-
tegrators require position averaging before computation and mollification while forces are computed. There
are several different types of modifiers supported by PROTOMOL :

• PreStep: Executed before each integration step.

• PreDriftOrNext: Executed before updating positions (for STS integrators) or running the next inte-
grator in the hierarchy (for MTS integrators).

• PostDriftOrNext: Executed after updating positions (for STS integrators) or running the next inte-
grator in the hierarchy (for MTS integrators).

• PreForce: Executed before calculating any forces.

• MediForce: Executed after calculating system forces and before calculating extended forces.

• PostForce: Executed after calculating all forces.

• PostStep: Executed after each integration step.

Pseudocode for execution of these modifiers is shown in Figure 4.1.
A modifier is added to PROTOMOL using the following steps:

1. Create a class called <modifier name>Modifier.

2. Create a constructor, it can be default, but often an Integrator* is passed so that functionality of
the integrator being modified is accessible.

3. Create a function doExecute(), accepting no parameters and returning void. In the function
body, specify exactly what this modifier should do.

4. In the integrator class, if it is not already there, create a member method addModifierAfterInitialize(),
returning void.

5. In the body of addModifierAfterInitialize(), if it is not already there add the statement:
STSIntegrator::addModifierAfterInitialize();
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Figure 4.1: Pseudocode for modification of integrators. The step() method is shown, which propagates
the molecular system one timestep. doDriftOrNextIntegrator() either updates positions for an
STS integrator or calls the next integrator in the hierarchy for MTS.

6. Add the following statement to the body of addModifierAfterInitialize() and before the
statement STSIntegrator::addModifierAfterInitialize();
adopt<modifier type>Modifier(new Modifier<modifier name>(<constructor parameters>));
where modifier type is one of the seven types mentioned above, modifier name is the name you pro-
vided for the modifier, and constructor parameters are passed to the constructor you created in step 2.
To pass the integrator object, use this.

4.1 Example: RATTLE

The minimum usable timestep in molecular dynamics simulation without introducing instabilities is limited
by the magnitude of the fastest frequency. In biomolecules, this fastest frequency occurs in bond motion.
As a result, some algorithms have been developed which constrain bond motion with the goal of increasing
the timestep of simulations. One such algorithm is RATTLE [1], which also constrains velocities of atoms
involved in constrained bonds. The constraint equation to be followed for two constrained bonded atoms a
and b is:

(va(t) − vb(t))(̇ra(t) − rb(t)) = 0 (4.1)

In our implementation of RATTLE, we allow this above constraint to be satisfied within a small con-
stant ε, which is set in the constructor and calculated using an auxiliary method calcError(). We also
allow a maximum number of velocity updates with the above constraint unsatisfied before automatically
stopping, another parameter. The new modifier inherits the Modifier interface which defines a method
for doExecute(). This is all shown in the header file below:

#ifndef MODIFIER_RATTLE_H
#define MODIFIER_RATTLE_H

#include "Modifier.h"
#include "Bond.h"
#include "Vector3DBlock.h"
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namespace ProtoMol {

class Integrator;

class ModifierRattle : public Modifier {
ModifierRattle(Real eps, int maxIter, const Integrator* i);

private:
virtual Real calcError();
virtual void doExecute();

const Integrator* myTheIntegrator;
Real myEpsilon;
int myMaxIter;
const std::vector<Bond::Constraint>* myListOfConstraints;

};
}

#endif

In the implementation file, we first define the constructor and initialize our parameters: for ε, the max-
imum number of iterations and the integrator being modified. myListOfConstraints is populated
with constrained bonds and angles by a separate PROTOMOL routine. The helper routine calcError()
computes the above equation for RATTLE and returns the absolute value which is used for ε. This error is
normalized by the number of constraints.

We update velocities of atoms a and b using the following equations:

va(t + δt) = va(t) + (1/ma)λab(t)rab(t)vb(t + δt) = vb(t) − (1/mb)λab(t)rab(t) (4.2)

where rab(t) = (ra(t) − rb(t)), and λab(t) is a Lagrange multiplier, used to compute the change in
momentum:

λab(t) =
−rab(t)vab(t)

δt(1/ma + 1/mb)||rab||2
(4.3)

We iterate through this process, repeatedly updating velocities until either the constraint is satisfied
within ε or the maximum number of iterations has been attained. This is implemented in doExecute().

#include "ModifierRattle.h"
#include "Topology.h"
#include "topologyutilities.h"

namespace ProtoMol {

ModifierRattle::ModifierRattle(Real eps, int maxIter, const Integrator* i):
myEpsilon(eps), myMaxIter(maxIter), myTheIntegrator(i){}

Real ModifierMetaRattle::calcError() const {
Real error = 0;
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for(unsigned int i=0;i<myListOfConstraints->size();i++){
int a1 = (*myListOfConstraints)[i].atom1;
int a2 = (*myListOfConstraints)[i].atom2;
Vector3D vab = (*myVelocities)[a1] - (*myVelocities)[a2];
Vector3D rab = (*myPositions)[a1] - (*myPositions)[a2];
Real err = fabs(rab * vab);
error += err;

}
return error /= myListOfConstraints->size();

}

void ModifierRattle::doExecute(){
Real error = calcError();
Real dt = myTheIntegrator->getTimestep() / Constant::TIMEFACTOR;
int iter = 0;
while(error > myEpsilon) {
for(unsigned int i=0;i<myListOfConstraints->size();i++) {
int a1 = (*myListOfConstraints)[i].atom1;
int a2 = (*myListOfConstraints)[i].atom2;
Real rM1 = 1/myTopology->atoms[a1].scaledMass;
Real rM2 = 1/myTopology->atoms[a2].scaledMass;
Vector3D rab = (*myPositions)[a1] - (*myPositions)[a2];
Real rabsq = rab.normSquared();
Vector3D vab = (*myVelocities)[a1] - (*myVelocities)[a2];
Real rvab = rab * vab;
Real gab = -rvab / (dt * (rM1 + rM2) * rabsq);
Vector3D dp = rab * gab;
(*myVelocities)[a1] += dp * dt * rM1;
(*myVelocities)[a2] -= dp * dt * rM2;

}
error = calcError();
iter++;
if(iter > myMaxIter)
break;

}
}

}
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Chapter 5

Adding a New Output

For complete results examination it is a common requirement to view a diverse set of parameter values.
PROTOMOL can output data to file(s) or to the screen, and can write trajectory files, which resemble a table
containing appropriate parameter values along with the simulation step. Files in particular can be convenient
for graphing data values using plotting libraries such as Matlab.

To add a new type of output to PROTOMOL , follow these steps:

1. Change to the directory framework/frontend.

2. Create a class Output<name of output>. If the output will be to the screen, inherit from Output.
Otherwise, if the output will be to a file(s), inherit from OutputFile.

3. Add to the class a data member static const string keyword;. Initialize this in the im-
plementation file:
const string Output<name of output>::keyword("config keyword");
Where config keyword is how this output should be referenced in the configuration file.

4. Add other data members necessary for this type of output.

5. Define a method getParameterswhich accepts one parameter vector<Parameter> &parameter.
This method should be declared const. The body of this method should contain one line construct-
ing each parameter that should be specified in the configuration file associated with this output. These
lines specify the configuration file keyword, the corresponding member variable, any constraints on
parameter values and finally default values. It is often convenient to use the keyword for the output
to refer to the file name through a call to getId(), defined for all children of OutputFile. For
example, suppose we wanted to specify a file name, and an output frequency (this is very common,
for example if we only want to output this data every certain number of simulation steps). Of course,
any output frequency would have to be positive, and the file name cannot be empty, so those are our
constraints. All OutputFile children implicitly have a myFilename defined. To hold the output
frequency, we’ll define myOutputFreq (see step 4). The following two lines would accomplish
this:
parameter.push back(Parameter(getId(),

Value(myFilename,ConstraintValueType::NotEmpty())));
parameter.push back(Parameter("TheOutputFreq",

Value(myOutputFreq,ConstraintValueType::Positive())));

6. Define a constructor which accepts and sets all parameters set through the configuration file.
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7. Define a default constructor, which sets any default values for member variables.

8. Define a method doMake() which returns an Output* and is const. This should accept a
string & for an error message that can be modified within the function, and a const vector<Value>
& values. Each of these values contains one parameter from the configuration file, in the order they
were registered in getParameters– therefore, in the constructor formal parameters corresponding
variables should appear in the same order. For example, if there were two configuration file parame-
ters:
return new Output<output name>(values[0], values[1]);

9. Define three methods: doInitialize() (to be invoked once at the beginning of a simulation),
doRun(int step) (to be invoked at every simulation step), and doFinalize(int step) (to
be invoked at the last simulation step). These methods can be empty if there is nothing to do at their
appropriate times.

10. Finally, change to the directory framework/factories. Open the file registerOutputExemplars.cpp.
In that file you will find a method registerOutputExemplars(). Add the line:
OutputFactory::registerExemplar(new Output<output name>());

5.1 Example: Selective Kinetic Energy

Suppose we wanted to add a new output to PROTOMOL which can accept a list of atom names from the con-
figuration file, and output the kinetic energy to a file just taking into account these names of atoms. The user
can specify SelectiveKineticFile for the output file name, SelectiveKineticFreq for the fre-
quency, and finally SelectiveKineticAtoms for the atom names. We can assume SelectiveKineticAtoms
will have a string of atom names associated with it. The header file would appear as follows:

#ifndef OUTPUTSELECTIVEKINETIC_H
#define OUTPUTSELECTIVEKINETIC_H

#include "OutputFile.h"
#include <vector>
using std::vector;

namespace ProtoMol {

class OutputSelectiveKinetic : public OutputFile {
public:

OutputSelectiveKinetic() {}
OutputSelectiveKinetic(const std::string& filename, int freq,

std::string atomnamelist);
virtual ˜OutputSelectiveKinetic() {}

virtual void getParameters(std::vector<Parameter> &parameter) const;
virtual unsigned int getParameterSize() const {return 3;}

static const std::string keyword;
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private:
virtual Output* doMake(std::String& errMsg,

const std::vector<Value>& values) const;
virtual void doInitialize() {}
virtual void doRun(int step);
virtual void doFinalize(int step);

std::string myAtomNameList;
vector<std::string> myAtomNames;

}
#endif

We will inherit from OutputFile, since we are writing to a file. This means that we must include
OutputFile.h. We will represent the list of atoms by an STL vector of strings, so we include
the vector interface and also declare a helper variable myAtomNames of this datatype. We define two
constructors, one a default which in this case does nothing, and a second that is parameterized with all
expected user parameters for this type of output (in this case, there are three – the file name, the frequency
and the list of atoms which in the configuration file will be a string delineated in some way, either by comma,
dashes, etc). Since we inherit from OutputFile there are already data members myFile (Output stream),
myFileName (output file name), and myOutputFreq (frequency). Therefore we just need one more data
member for the string parameter which specifies the list of atom names. We also declare a destructor which
does nothing.

We declare a data member keyword to be static const, we will initialize this later in the imple-
mentation file. This is how low level factories recognize this output (therefore it is important to make sure
no two outputs have the same keyword). We then declare the methods doMake, doInitialize,doRun
and doFinalize as specified. doInitialize in this particular case is empty.

Finally, we declare a method getParameters and also getParameterSize()which returns in
our case 3, since there are three configuration file parameters associated with this output.

Now let’s view the implementation file:

#include "OutputSelectiveKinetic.h"

using std::vector;

namespace ProtoMol {
const string OutputSelectiveKinetic::keyword("OutputSelectiveKinetic");

OutputSelectiveKinetic::OutputSelectiveKinetic(const std::string& filename,
int freq,
std::string atomnamelist)

{
myFilename = filename;
myOutputFreq = freq;
open();
myAtomNames = parseOutStrings(atomnamelist);

}
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void OutputSelectiveKinetic::doRun(int step)
{

Real kineticEnergy = 0.0;
for (unsigned int i = 0; i < myTopology->atoms.size(); i++) {
if (findIn(myAtomNames, myTopology->atoms[i].atomTypes[i].name))

kineticEnergy += myTopology->atoms[i].scaledMass
* ((*velocities)[i]).normSquared();

}
myFile << step << " " << kineticEnergy << endl;

}

void OutputSelectiveKinetic::doFinish() {close();}

Output* OutputSelectiveKinetic::doMake(string&,
const vector<Value>& values) const {

return (new OutputSelectiveKinetic(values[0],values[1],values[2]));
}

void OutputSelectiveKinetic::getParameters(vector<Parameter> &parameter) const {
parameter.push_back(Parameter("SelectiveKineticFile",

Value(myFilename,ConstraintValueType::NotEmpty())));
parameter.push_back(Parameter("SelectiveKineticFreq",

Value(myOutputFreq,ConstraintValueType::Positive())));
parameter.push_back(Parameter("SelectiveKineticAtoms",

Value(myAtomNameList, ConstraintValueType::NotEmpty())));
}

}

We include the corresponding header file and set the keyword variable to OutputSelectiveKinetic.
Next, we implement all remaining methods. First is the parameterized constructor, where we can set the
values for myFileName and myOutputFreq. Inheriting from OutputFile gives the unique ability
to invoke open(), and have myFile automatically set to an output stream writing to myFileName.
doFinish() then just has to call close() to close this stream. Finally we set our helper vector for
the list of atom names from the passed string. We assume some sort of string parsing routine has been
implemented for this conversion and for now call it parseOutStrings().

We specify the names of parameters to expect in the configuration file in getParameters. Note
that we push the parameter objects and their constraints into the parameter vector in the order that we
initialize them in the parameterized constructor. This way when doMake is called it can just pass these
parameter values in order to the constructor and return a new object. The constraint on our file name and list
of atom names is that they not be empty, and on our frequency that it not be negative or zero.

Finally the method doRun computes the total kinetic energy between all atom names selected by the
user and outputs it to the output file along with step number. All atoms in the topology are looped through
and the corresponding atom name is checked to see if kinetic energy should be counted - we assume there is
a findIn method defined which returns true or false depending if a passed string is in a vector
of strings. Kinetic energy is computed by multiplying the masses of these atoms by their normalized
velocities squared.
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Chapter 6

Adding a New Topology

This type of extension will never be done unless you are adding a new type of boundary conditions or cell
manager. But if either of these are necessary, follow the following steps once you’ve accounted for these new
boundary conditions/manager in the framework and added them as new classes in framework/topology.

1. Change to the directory framework/factories.

2. Open the file registerTopologyExemplars.cpp.

3. Ensure that in every line in this method which invokes TopologyFactory::registerExemplar(),
that all possible pairs of boundary conditions and cell managers are present. Currently PROTOMOL

supports two boundary conditions (periodic and vacuum) and one cell manager (cubic). Thus for
example if adding a second cell manager to PROTOMOL as it stands, you will need to add two more
calls to registerExemplar, one pairing the manager with periodic boundary conditions and the
other with vacuum.
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Chapter 7

Conclusions

We have presented a guide on how to extend PROTOMOL to encapsulate new algorithms for force calcu-
lation, system integration (including modifiers), outputs and topologies. Our hope is that these guidelines
will help PROTOMOL to be a more useful framework for prototyping new methods for running molecular
dynamics simulations.

Full guidelines for how to setup a configuration file can be found in the PROTOMOL user guide, and
a full description of back end classes in the programmer’s guide. Further questions can be directed to
protomol@cse.nd.edu.
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