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Chapter 1

Introduction

Molecular Dynamics (MD) describes a molecular system as a function of time based on integration of equa-
tions of motion. The most computationally expensive part is the force calculation at every time step. There
have been many implementations to solve one given problem very efficiently, but they usually lack flexibil-
ity when trying to implement new methods or approaches to solve the problem. What PROTOMOL provides
is a generic, object-oriented component framework for MD simulations. To meet these high performance
expectations, PROTOMOL uses cell algorithms, grid techniques and well-optimized libraries for the most
computationally expensive forces. The design of PROTOMOL also includes parallelization, based on com-
ponents to distribute the work and data. The approach follows an incremental and partial parallelization
scheme, which allows the developer to start with a sequential implementation and then do step by step par-
allelization.

The overall framework of PROTOMOL is designed for non-bonded, bonded, short-range and long-range
forces for systems with tens of thousands of atoms representing water and several large molecules. It is
designed for high flexibility, ease in extension and maintainence, and high performance demands.

1.1 Useful Features

1.1.1 Force field

PROTOMOL supports force fields in the same format that CHARMM uses, including bonded interactions
between groups of 2 (bonds), 3 (angles), and 4 (dihedrals and impropers) atoms, as well as electrostatic and
van der Waals nonbonded interactions.

1.1.2 Multiple time-stepping

Multiple time-stepping is a useful technique for cost reduction of calculating long-range electrostatic forces.
The idea behind multiple time-stepping is to compute at every timestep bonded, van der Waals and short-
range electrostatic forces, while computing long-range electrostatic forces less often. Overtime this will
result in improved efficiency because the cost for computing electrostatic interactions will be amortized
over the number of timesteps to be run in the simulation [1].

1.1.3 Comparison of force algorithms

PROTOMOL is able to compare forces measuring the error and the time; e.g. an exact algorithm with a fast
approximation.
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1.1.4 Ability to interact with VMD

VMD is a program developed by the University of Illinois that is used for displaying large biomolecular
systems in three dimensions. PROTOMOL is conveniently able to interact with this useful program. For
more information, see:

http://www.ks.uiuc.edu/Research/vmd

1.1.5 Ability to run on parallel machines

The most computationally expensive part of an MD simulation is force evaluation between atoms. Because
so much computing power is required for the force evaluation of large systems,i.e., 5000 atoms or more,
the ability to run MD simulations on parallel machines will hold a large advantage with regard to speed.
PROTOMOL has been designed to take advantage of parallel computing in running MD simulations.

1.1.6 Installation

Please follow the README file under protomol directory for installation instructions.

1.1.7 Licensing

PROTOMOL is a free software, available under GNU general public license(GPL)1. Please cite [10] if you
are using PROTOMOL for your research.

1http://www.gnu.org/licenses/licenses.html#GPL
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Chapter 2

Getting Started

This chapter will introduce the commands and settings needed to run PROTOMOL. Included are the exact
formats of the command line on a UNIX / Linux machine and the configuration file containing all initial
information to run the MD simulation. In Chapter 4 we will show three sample configuration files.

2.1 Command Line

The MD application of the PROTOMOL framework has conveniently been namedprotomol . At a UNIX
/ Linux prompt, a user typesprotomol followed by an alternating list of keywords and arguments (see
chapter 3 for a list of keywords). Thus, the general format for the PROTOMOL execution command is the
following:

protomol [--keyword1 value1] [--keyword2 value2] [--keyword3 value3] .......

Note that keywords must be preceded by two dashes, where a value can be a list of values - e.g. for the
keyword CellBasisVector1. Also note that any keyword-value pair specified on the command line overrides
any according pair in the configuration file.

The user may also specify any of these keywords and values in the configuration file that he or she is
using. The exact pathname of the configuration file being used for running PROTOMOL must be specified
on the command line. For example, the configuration file can be specified one of the following ways:
protomol [--config] <pathname/myconfigfilename> ......

The--config keyword can be omitted if the configuration file is the first thing specified.

protomol ..... --config <pathname/myconfigfilename> .....

2.1.1 Help Option

A user may type one of the following two possibilities at a UNIX / Linux prompt for help with the PROTO-
MOL command line:

1. protomol -h

2. protomol --help
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2.2 Simple GUI

In oder simplify the usage of PROTOMOL (i.e., on Windows) you may use the simple perl/Tk GUI front-end
TkProtomol.pl . The script is located underprotomol/tools , and has a simple editor and plotter.

Figure 2.1: Simple perl/Tk GUI front-end.

2.3 Configuration File

The configuration file is a text file containing a collection of keyword-value pairs specifying the simulation
configuration, I/O files and formats, and the definition of the integrator scheme.

2.3.1 Format of PROTOM OL keywords in the configuration file

The configuration file format for PROTOMOL is quite simple, making it convenient for creation and modifi-
cation of the file. The advantage of straightforward modification of the configuration file is that the user can
very easily switch between running the same molecule under different initial conditions, or even switch to
a different molecule without much trouble. The general format for a PROTOMOL configuration file is a list
of keywords and values, with whitespace between each keyword and value and a newline between each new
keyword-value pair:

keyword1 value1
keyword2 value2# comment
# comment
keyword3 value3

.

.

.

A list of PROTOMOL keywords, possible values and defaults can be found in section 3, or type
protomol -m --keywords .
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2.3.2 Format of the integrator and their arguments

In addition to the keyword-value pairs in the configuration file, one must set up an integrator in the following
manner:

Integrator {
level N-1<integrator type>{ # MTS integrator

<integrator arguments> (These will differ depending on the integrator type).
<integrator forces> (These are all optional).

}
.
.
.

level 0<integrator type>{ # STS integrator
.
.
.

}
}

Note that the order of definition for each level is not strict, but PROTOMOL expects one definition for
each level.

Integrator Types

• Multiple Timestep Integrators (MTS)

1. BSplineMOLLY

2. EquilibriumMOLLY

3. HybridMC (Hybrid Monte Carlo Integrator)

4. Impulse (Verlet-I/r-RESPA)

5. ShadowHybridMC (Shadow Hybrid Monte Carlo Integrator)

6. Umbrella

• Single Timestep Integrators (STS)

1. BBK

2. DMDLeapfrog (Self-consistent Leapfrog from Dissipative Particle Dynamics)

3. DihedralHMC

4. DihedralLiftMC

5. LangevinImpulse

6. Leapfrog (Velocity Leap-Frog Integrator)

7. NPTVerlet

8. NoseNVTLeapfrog

9. PLeapfrog (Position Leap-Frog Integrator)

5



10. PaulTrap

• Alias

– HBondMOLLY : BSplineMOLLY

The choice of what integrator to use in ProtoMol is largely determined by the intended application. The
main applications of molecular dynamics (MD) are equilibration, dynamics proper (e.g., to compute trans-
port properties and autocorrelation functions), kinetics (e.g., to compute transition rates between metastable
states), and sampling (e.g., to compute thermodynamic properties such as the free energy).

Computation of dynamics is more stringent than the other applications of MD. One should probably
equilibrate a number of replicas from the desired ensemble (NVT or NPT) and then run NVE simulations.
For NVE simulation, the standard integrator is the single time stepping Leapfrog. Usually the velocity
version is preferred. However, if one uses multiple time stepping, the position version may be better. For
solvated biomolecules the time step used in leapfrog is typically 1 fs, although the stability limit is around
2.25 fs. Using Shake (and optionally Rattle) to constrain bond lengths to Hydrogen allow longer time steps
by roughly a factor of 2. Other tricks are used to use longer time steps, such as altering the mass of Hydro-
gens, etc.

Multiple time stepping (MTS) allows one to use longer time steps, although the presence of nonlin-
ear and linear resonances (at one third and one half the fastest period in the system, cf. [9]) significantly
limits the time steps available. The Verlet-I/r-RESPA/Impulse method can take long time steps of 3.3 fs
without energy drift for very long times (several ns of simulation). One can get even longer steps using
either the Equilibrium MOLLY [8] or the Bspline-MOLLY [5] method. Long time steps for unconstrained
biomolecules of 6 fs have been reported, although care is recommended if using time steps of 5 fs or more.
One should carefully analyze the time series of energy to see whether an intolerable drift is occurring over
the length of the simulation.

For equilibration or sampling in NVT, we recommend using the Langevin Impulse method, which is
exact for constant force. A good alternative is the self-consistent Leapfrog method (DMDLeapfrog), which
preserves linear momentum and therefore hydrodynamics properties. We discourage the use of extended
Hamiltonian methods such as Nose-Hoover (NoseNVTLeapfrog), since these are frequently not ergodic and
have difficulty maintaining equipartition [4]. For equilibration in NPT, we have implemented the NPT Verlet
method (NPTVerlet). This is probably the best equilibration scheme in ProtoMol, but it requires some fine
tuning of the parameter scheme. Note that there are currently no minimization schemes in PROTOMOL. We
recommend using NAMD 2.5 for minimization if required. This will be alleviated soon.

For sampling from the canonical (NVT) ensemble, one can also use Hybrid Monte Carlo methods to
eliminate the systematic error due to discretization error in MD, which is manifested as time step dependence
of the averages computed using MD. For small systems, Hybrid Monte Carlo is adequate. For larger systems
(upward of hundreds of atoms), Shadow Hybrid Monte Carlo is the best choice. One has to choose a
parameterc that controls efficiency and variance in observables, see [7] and [4].

Note that one can build a replica exchange protocol with ProtoMol - we currently do it using scripting,
but this will be soon incorporated into the main code. This is a much more efficient way of sampling.
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Integrator Argument Types

1. BBK

timestep<length of step (float)>

temperature <Kelvin temperature (float)>

gamma<gamma (float)>

seed<random seed (integer)>

2. BSplineMOLLY

cyclelength<length of cycle (integer)>

BSplineType<short|long>

mollyStepSize<stepsize used for MOLLY integrator>

3. DihedralHMC

cyclelength<Length of cycle (integer)>

temperature <Kelvin temperature (in K)>

randomCycLen <Use a random adjustment to cyclelength (boolean)>

dihedralsSet<Flag to specify which dihedrals to move, if false then dihedrals chosen randomly
(boolean)>

dhmcDiSetFile<The dihedral indices are to specified in this file (string)>

anglesSet<(boolean)>

dhmcAnSetFile<(string)>

4. DihedralLiftMC

cyclelength<Length of cycle (integer)>

randomCycLen <Use a random adjustment to cyclelength (boolean)>

temperature <Preferred system temperature (in K)>

5. DMDLeapfrog

timestep<Size of each step (float)>

iterations <number of iterations (integer)>

gamma<gamma (float)>

temperature <Kelvin temperature (float)>

seed<seed to generate random numbers (integer)>

6. EquilibriumMOLLY

cyclelength<length of cycle (integer)>

7. HybridMC

cyclelength<length of cycle (integer)>

randomCycLen <Use a random adjustment to cyclelength (bool)>

temperature <Kelvin temperature (float)>
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8. Impulse

cyclelength<length of cycle (integer)>

9. LangevinImpulse

timestep<length of step (float)>

temperature <Kelvin temperature (float)>

gamma<gamma (float)>

seed<random seed (integer)>

10. Leapfrog

timestep<length of step (float)>

11. NoseNVTLeapfrog

timestep<length of each step (float)>

temperature <preferred system temperature(in K)>

thermal <heat bath coupling( 1.0:very strong, 0:none) (float)>

bathPos<history of the difference of system and heat bath (float)>

12. NPTVerlet

timestep<length of step (float)>

temperature <Kelvin temperature (in K)>

pressure<(in Bar)>

omegaTo<thermostat frequency>

omegaTv<volume thermostat frequency>

tauP <barostat time period>

13. PaulTrap

timestep<length of step (float)>

temperature <Kelvin temperature(in K)>

thermal <(float)>

bathPos<(float)>

bathVel <(float)>

scheme<thermostat scheme NVT|NVT zero|NVT ind|NVT shell|NVT global|berendsen|berendsenzero
|berendsenind| berendsenshell|berendsenglobal (string)>

part <(float)>

time <(vector)>

t <(vector)>

14. PLeapfrog

timestep<length of step (float)>

15. ShadowHMC
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cyclelength<length of step (float)>

randomCycLen <Use a random adjustment to cycleLengthi (boolean)>

temperature <Preferred system temperature(in K)>

order <Desired order of approximation (4th or 8th)>

c <Parameter to specify divergence between shadow and total energy (float)>

16. Umbrella

cyclelength<length of step (float)>

General Format of Integrator Forces

force <force1 type>
<force1 arguments>

force <force2 type>
<force2 arguments>

force <force3 type>
<force3 arguments>

. . .
PROTOMOL supports primarily forces defined by the CHARMM forcefields (versions 19 and 27). There
are some custom forces available (haptic force, friction, gravitation, Paul Trap, external field, external grav-
itation, Harmonic biasing force HarmDihedral, magnetic dipole, etc.) and it is easy to add new forces. You
can look at the forces available in your copy ofProtoMol by runningprotomol -f .

You can include forces at will in your integrator. A nice tutorial on how to compose MTS integra-
tors along with the forces is athttp://www.nd.edu/˜izaguirr/papers/m3paper.pdf . Some
forces do not have parameters. This is particularly the case of bonded forces: angle, bond, dihedral, and
improper. Nonbonded forces have several parameters, which fall primarily in these categories:

• Potential: Primarily Coulomb or Lennard Jones.

• Algorithm: This option refers to the algorithm used to compute the sum of pairwise interactions.
Depending on the boundary condition and the potential, there are a number of algorithms:

– For both Lennard Jones and Coulomb in periodic and vacuum boundary conditions, one can
use cutoff computation (-algorithm NonbondedCutoff ) or direct computational of all
interactions (-algorithm NonbondedFull )

– For Coulomb computation one can use anO(N) multigrid summation (-algorithm multigrid )
[6], both for vacuum or periodic boundary conditions. This is an attractive alternative to PME or
Ewald, since it scales better in parallel. Setting the parameters requires some knowledge, so we
recommend using the online recommender system MDSIM A ID at http://mdsimaid.cse.nd.edu

– For Coulomb one can also use PME (-algorithm PMEwald ) or Ewald (-algorithm
FullEwald ).

• Switching function: when using cutoff or MTS integrators, one needs to bring the potential energy
(and hence the force) smoothly to zero to avoid discontinuities that destabilize the integrators for MD.
For LennardJones we recommend using aC2 continuous switching function (-switchingFunction
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C2). For Coulomb aC1 switching function often suffices (-switchingFunction C1 ). It is also
easy to add switching functions.

• Method specific parameters: Some methods require specific parameters, see the current force
definitions accepted inProtoMol by runningprotomol -f .

2.4 Required Parameters

As mentioned earlier, the command line must contain either the full pathname of the configuration file.
These are the only restrictions specifically applied to the command line.

The following parameters MUST be specified on either the command line or in the configuration file
specified on the command line (you may view Chapter 3 for a list of supported PROTOMOL files and their
formats):

• One of either an initial positions file in PDB or XYZ or Binary format.

• One of an initial velocities file in PDB or XYZ or Binary format, or an initial temperature.

• A PSF topology file.

• A CHARMM Par parameters file.

• If the user specifies any specific output files that should be written, they must specify a filename.

• The number of steps for the simulation.

• A cubic cell manager and either vacuum or periodic boundary conditions.

• An integrator.
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Chapter 3

PROTOM OL keyword and descriptions

3.1 Input files

keyword type Description
posfile string Contains the full or relative pathname of the initial positions

file. PROTOMOL supports PDB, XYZ or Binary formatted
position files.

velfile string Contains the full or relative pathname of the initial velocities
file. Once again, PROTOMOL supports PDB, XYZ or Binary
formats. If no initial velocity file is specified, random veloci-
ties are generated based on the initial temperature and a seed
that can also be specified. Therefore one of either the velfile,
or temperature needs to be specified. A seed is optional.

psffile string Contains the full or relative pathname of the initial topology
file in PSF format.

parfile / parameters string Contains the full or relative pathname of the initial CHARMM
parameter file.

3.2 Boundary Conditions

keyword type Description
boundaryconditions string PROTOMOL supports vacuum or periodic boundary condi-

tions, specified with “Vacuum” or “Periodic”, respectively.
cellbasisvector1 x y z (x,

y, and z are
floats)

Basis vector 1, for periodic boundaries

cellbasisvector2 x y z (x,
y, and z are
floats)

Basis vector 2, for periodic boundaries
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cellbasisvector3 x y z (x,
y, and z are
floats)

Basis vector 3, for periodic boundaries

cellorigin x y z (x,
y, and z are
floats)

Center of periodic cell, for periodic boundaries

3.3 Output Files

keyword type Description
dcdfile string Contains the full or relative pathname of the DCD trajectory

file to be written, if desired.
dodcdfile boolean Specifies if the user would like a DCD trajectory file to be

written.
allenergiesfile string Contains the full or relative pathname of the energies file to be

written, again if desired.
doallenergiesfile boolean (de-

fault: true)
Specifies if the user would like an energies file to be written,
with all energies (bond, angle, dihedral... whatever was forced
in the integrator section) in one file.

allenergiesFileOutputFreqinteger (de-
fault: out-
putFreq)

Specifies the frequency of the energies file to be written, if
desired.

allEnergiesFileCacheFreqinteger (de-
fault: 1)

Specifies frequency in number of lines to flush the cache to
file.

allEnergiesFileCacheSize integer (de-
fault: 0)

Specifies the minimal size of cached data to flush to file

allEnergiesFileCloseTime float (de-
fault: 1.0)

Specifies the minimal time interval between two writes to
close the file temporarily

outputfreq integer Specifies the frequency in timesteps for the writing of energy
data to the console and defines the default frequency for other
outputs.

finpdbposfile string Contains the full or relative pathname of the final positions file
in PDB format, if the user desires.

dofinpdbposfile boolean Specifies if the user would like a final PDB positions file to be
written.

xyzposfile string Contains the full or relative pathname of the positions trajec-
tory file in XYZ format, once again if desired.

doxyzposfile boolean Specifies if the user would like an XYZ trajectory file for po-
sitions to be written.

xyzposFileOutputFreq integer (de-
fault: out-
putFreq)

Specifies the frequency of the XYZ trajectory file for positions
to be written, if desired.
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xyzvelfile string Contains the full or relative pathname of the XYZ velocities
trajectory file, if desired.

doxyzvelfile boolean Specifies if the user would like an XYZ velocities trajectory
file to be written.

xyzvelFileOutputFreq integer (de-
fault: out-
putFreq)

Specifies the frequency of the XYZ trajectory file for veloci-
ties to be written, if desired.

momentumfile string Contains the full or relative pathname of the momentum out-
put file to be written, if desired. The output contains the mo-
mentum for each dimension..

domomentumfile boolean Specifies if the user would like a momentum output file to be
written.

momentumFileOutputFreqinteger (de-
fault: out-
putFreq)

Specifies the frequency of the tmomentum file to be written, if
desired.

MomentumFileCacheFreqinteger (de-
fault: 1)

Specifies frequency in number of lines to flush the cache to
file.

MomentumFileCacheSizeinteger (de-
fault: 0)

Specifies the minimal size of cached data to flush to file

MomentumFileCloseTimefloat (de-
fault: 1.0)

Specifies the minimal time interval between two writes to
close the file temporarily

finXYZBinPosFile string Specifies the name of the output file which will contain the
co-ordinates are recorded at the end of the simulation in XYZ
binary format.

dofinXYZBinPosFile boolean Flag which specifies whether to generate final positions in
XYZ binary format

finXYZBinVelFile string Specifies the name of the output file which will contain the
velocities are recorded at the end of the simulation in XYZ
binary format.

dofinXYZBinVelFile boolean Flag which specifies whether to generate final veclocities in
XYZ binary format

finXYZPosFile string Specifies the name of the output file which will contain the
co-ordinates are recorded at the end of the simulation in
XYZ(ASCII) format.

dofinXYZPosFile boolean Flag which specifies whether to generate final positions in
XYZ(ASCII) format

finXYZVelFile string Specifies the name of the output file which will contain
the velocities are recorded at the end of the simulation in
XYZ(ASCII) format.

dofinXYZVelFile boolean Flag which specifies whether to generate final veclocities in
XYZ(ASCII) format
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paulfile string Contains the full or relative pathname of the Paul trap out-
put file to be written, if desired. The output contains the ki-
netic energy, temperature, energy difference of Coulomb mi-
nus twice the Paul trap, and a histogram in function of the
distance (position) to the origin.

dopaulfile boolean Specifies if the user would like a Paul trap output file to be
written.

paulFileOutputFreq integer (de-
fault: out-
putFreq)

Specifies the frequency of the Paul trap output file to be writ-
ten, if desired.

PaulFileCacheFreq integer (de-
fault: 1)

Specifies frequency in number of lines to flush the cache to
file.

PaulFileCacheSize integer (de-
fault: 0)

Specifies the minimal size of cached data to flush to file

PaulFileCloseTime float (de-
fault: 1.0)

Specifies the minimal time interval between two writes to
close the file temporarily

paulLowFile string Specifies the filename where minimal positions and paulTrap
output are recorded

doPaulLowFile boolean Used to set or reset paulTrap minimal output and positions
diffusionFile string File to print the diffusion coefficient computed up to each time

step
dodiffusionFile boolean Flag to specify whether to output diffusion coefficient com-

puted up to each time step
diffusionFileOutputFreq integer Used to set output frequency of diffusion coefficient
DiffusionFileCacheFreq integer (de-

fault: 1)
Specifies frequency in number of lines to flush the cache to
file.

DiffusionFileCacheSize integer (de-
fault: 0)

Specifies the minimal size of cached data to flush to file

DiffusionFileCloseTime float (de-
fault: 1.0)

Specifies the minimal time interval between two writes to
close the file temporarily
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3.4 Output dihedrals

keyword type Description
dihedralsFile string Specifies the filename where the dihedral angle values will be

stored
dodihedralsFile boolean This flag specifies whether to output dihedrals in the dihedrals-

File
dihedralsIndex Integer Specifies the index of the dihedral in the psf file for which the

output have to be recoreded in dihedralsFile.
dihedralsFileOutputFreq Integer Specifies the frequency of output for dihedrals (e.g. a fre-

quency of 1 implies the dihedral angle is recorded at every
step of the integration. )

DihedralsFileCacheFreq integer (de-
fault: 1)

Specifies frequency in number of lines to flush the cache to
file.

DihedralsFileCacheSize integer (de-
fault: 0)

Specifies the minimal size of cached data to flush to file

DihedralsFileCloseTime float (de-
fault: 1.0)

Specifies the minimal time interval between two writes to
close the file temporarily

dihedralsSet boolean It should be set to true if you want to record multiple dihedrals.
dihedralsSetFile string Specifies the filename where one can specify multiple dihedral

indices, one in each line

3.5 Parallel Mode

keyword type Description
parallelpipe integer (de-

fault: 0)
Specifies if the depth of the pipe to assign work to each slave.

usebarrier boolean (de-
fault: true)

Specifies if explicit synchronization (barrier) is desired before
global communication.

maxPackages integer Maximum number of work packages per node per force; in-
creased packages, better load balance, but more communica-
tion(Default is -1)

parallelMode string static, dynamic or masterSlave, where static : static load bal-
ancing, no com. between master and slaves, only slaves, and
dynamic : master-slave, where the master does some work in-
between

3.6 Simulation Setup

15



keyword type Description
numsteps integer Specifies the number of steps for the simulation to run.
firststep integer (de-

fault: 0)
Specifies the number of the initial timestep.

temperature float Specifies the initial Kelvin temperature.
seed unsigned in-

teger
Random number seed for velocity generation. This is only
used if an initial velocity is not specified, and in that case if
the seed is specified as 0, it defaults to the timer.

cellmanager string Cell manager - current PROTOMOL only supports a cubic cell
manager, specified by “Cubic”. The reason why it needs to be
specified even though there is only one option is to allow for
future flexibility.

cellsize float Specifies the size of cell used by the cell manager.
exclude “none”,

“1-2”, “1-
3”, “1-4”,
“scaled1-4”
(default:
“scaled1-4”)

Specifies nonbonded exclusions

integrator string Specifies the name of integrator(s) to be used
shadowEnergy boolean Specifies whether to compute shadow hamiltonian
paulOmega real
paulOmegaZ real
Screen boolean Output to the screen
ScreenOutputFreq integer Used to set frequency of screen output
ScreenPaulTrap boolean Used to set screen output frequency for PaulTrap

3.7 Parameters for RATTLE and SHAKE

keyword type Description
rattle boolean Use this flag to constrain velocities
rattleEpsilon real Error tolerance for rattle (default=1e − 5)
rattleMaxIter integer Maximum number of iterations for rattle (default=30)
shake boolean Use this flag to constrain positions
shakeEpsilon real Error tolerance for shake (default=1e − 5)
shakeMaxIter integer Maximum number of iterations for shake (default=30)

3.8 Miscellaneous
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keyword type Description
virialCalc boolean Compute virial (default=false)
molVirialCalc boolean Compute molecular virial (default=false)
molecularTemperature boolean compute molecular temperature (default=false)
energiesFileOutputFreq boolean
coulombScalingFactor real Scaling factor for Coulomb interactions when using scaled1-4

exclusions (default=1, appropriate for CHARMM)
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Chapter 4

PROTOM OL Configuration Files and Test
Molecule Examples

The PROTOMOL source release includes a folder of example simulation configurations and select test
molecules. Examples are organized by test molecule and each folder contains one or more simulation
configuration files. To provide the user with a uniform set of example simulation configurations, the sol-
vated BPTI test molecule with 14281 atoms includes the most robust set of configuration files. Each test
molecule example includes a README file which describes the origination of the molecular parameters
and any preprocessing (equilibration, minimization, etc...) which has been performed. The following three
subsections provide the reader with a more indepth look at representative simulation configuration files.

Figure 4.1:Left: alanin 66 ,right: 10 Å diameter water droplet.

4.1 Alanin Configuration File with Leapfrog Integrator

Following is an example of a configuration file for the protein molecule alanin (Fig.4.1) . In this case,
PROTOMOL will run 10000 steps starting at time 0, and random velocities will be generated based on the
initial temperature of 300.0 and the random seed of 1234. A cubic cell manager is used (this must be true)
with a cell size of 6.5. Output files, in this case just an all energies file and a DCD trajectory file will
be written every 100 timesteps. Also a final PDB position and velocity file will be written. The initial
parameter file alanin.par uses the newer CHARMM format. Vacuum boundary conditions are present, and
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the integrator is a single-timestep leapfrog integrator, with all bonded and two nonbonded forces present.
The van der Waals and electrostatic forces both use a nonbonded cutoff algorithm and have cutoffs at 6.5.
The switching function for the van der Waals potential function makes the second derivative continuous at
the cutoff point, while the electrostatic potential function has a continuous first derivative due to its switching
function. The switchon option has been used for van der Waals (recall that it can only be used with the C2
switching function).

temperature 300.0
firststep 0
numsteps 10000
cellsize 6.5
outputfreq 100
seed 1234
posfile alanin.pdb
psffile alanin.psf
parfile alanin.par
finpdbposfile alanin.out.pos.pdb
finXYZvelfile alanin.out.vel.pdb
DCDfile alanin.out.dcd
allenergiesfile alanin.out.energy
boundaryConditions vacuum
cellManager Cubic
Integrator {

level 0 Leapfrog {
timestep 1

force Improper
force Dihedral
force Bond
force Angle
force LennardJones

-algorithm NonbondedCutoff
-switchingFunction C2

-switchon 1.0
-cutoff 12

force Coulomb
-algorithm NonbondedCutoff
-switchingFunction C1
-cutoff 12

}
}

4.2 20Å diameter water droplet With A Two-Level Integration Scheme

This sample of water (Fig.4.1) is being run using a two-level integration scheme, starting with an MTS
Impulse Integrator with a cycle length of 5 and finishing with an STS LeapFrog Integrator that has a timestep
of 1.0. The initial temperature is 300 and the first timestep is 0, and the simulation will be run for 50 steps.
Note the cubic cell manager and periodic boundary conditions, and that all cell basis vectors have been
provided. Output files, however, will be written, including a DCD trajectory file and an all energies file,
every 10 steps. Note that all necessary initial data files have been provided. Once again, for the level 1
integrator the Coulombic interaction is computed using Ewald [2,3] summation.
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temperature 300.0
firststep 0

numsteps 50

cellsize 6.5

outputfreq 10
seed 1234

posfile equil298K_01.pos.pdb
velfile equil298K_01.vel.pdb

psffile equil298K_01.psf
parfile equil298K_01.par

ALLENERGIESFILE equil298K_01.out.energies

cellBasisVector1 25.0 0.0 0.0
cellBasisVector2 0.0 25.0 0.0
cellBasisVector3 0.0 0.0 25.0
cellorigin 0.0 0.0 0.0

boundaryConditions Periodic
cellManager Cubic

Integrator {

level 1 Impulse {
cyclelength 4

force Coulomb -algorithm FullEwald -reciprocal
}
level 0 Leapfrog {

timestep 1.0
force Coulomb -algorithm FullEwald -correction -real
force Bond, Angle
force LennardJones

-algorithm NonbondedCutoff
-switchingFunction C2
-cutoff 6.5

-switchon 0.1
}

}

4.3 BPTI with Hybrid Monte Carlo Sampling

Here is an example of the Hybrid Monte Carlo algorithm used to sample a BPTI molecule - a 2-level Hybrid
Monte Carlo MTS integrator is used. Once again, the initial timestep is at time 0, but the number of timesteps
to run this time is 100. 1-2 exclusions are desired, and the cellsize is once again 6.5. Initial temperature
has been specified to be 300 to initialize with random velocities. There are now however periodic boundary
conditions, and as a result three cell basis vectors along with a cell origin are required. Output files will be
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written to every 10 timesteps - this time they include XYZ position and trajectory files, a DCD trajectory
file, and energies file (thus there will be 10 different energy files generated - one for each type of energy).
Note that a final XYZ position file will be written since dofinxyzvelfile is set to “yes”. Since commotion
is set to “yes”, center of mass motion will be removed when calculating velocities. Once again notice the
cubic cell manager, and also notice that the HMCIntegrator does not have forces. The integrator will run
5 Hybrid Monte Carlo cycles, with a cycle length of 10 and 50 warm-up cycles, at a temperature of 300
K. Four bonded forces (bond, angle, improper, dihedral) are present, and one nonbonded (FullEwald, the
Coulomb force solved for using Ewald summation).

temperature 300
firststep 0
numsteps 100
exclude 1-2
cellsize 6.5
cellbasisvector1 32.0 0 0
cellbasisvector2 0 32.0 0
cellbasisvector3 0 0 32.0
cellorigin 0 0 0
outputfreq 10
posfile ../data/bpti.pdb
psffile ../data/bpti.psf
parfile ../data/bpti.par
finxyzposfile bpti.out.pos.xyz
finxyzvelfile bpti.out.vel.xyz
dofinxyzvelfile yes
xyzposfile bpti.out.trajectory.pos.xyz
dcdfile bpti.out.dcd
allenergiesfile bpti.out.energy
boundaryConditions Periodic
commotion yes
cellManager Cubic
Integrator {

level 1 HybridMC {
cyclelength 10
warmupcycles 50
temperature 300.0

}
level 0 PLeapFrog {

timestep 1
force Bond, Angle, Dihedral, Improper
force Coulomb

-algorithm FullEwald
-real
-reciprocal
-correction

}
}
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4.4 Shadow Hybrid Monte Carlo

Here is an example of Shadow Hybrid Monte Carlo(SHMC) algorithm using the BPTI molecule-a 2 level
ShadowHMC integrator is used. The acceptance rate of Hybrid Monte Carlo techniqye decreases exponen-
tiall with increasing timestepδt andN , the system size. SHMC is a generalizations of HMC technique that
samples form a p. d. f. in all phase space. It achieves an asymptotic speedup ofO(N

1
4 ) over Hybrid Monte

Carlo. The initial timestep is 0 and the total number of timesteps to simulate is 10. ShadowHMC takes as
input 4 parameters. Thetemperatureis the simulation temperature. The seed initializes the random number
generator. Like HMC, SHMC uses random number generator drand(). SHMC needs a tuning parameterc to
indicate the divergence between shadow and total energy. SHMC requires the integrator to be symplectic in
order to compute shadow hamiltonian. That is Verlet/Leapfrog is used as innner integrator. The cyclelength
specifies the number of steps before the energy difference is computed and the metropolis criteria is checked.
Here it is 25. The order specifies the order of the accuracy of the shadow hamiltonian. In PROTOMOL , we
have only 2 options are available for order, namely4 and8. Please see [7] for further details.

debug 0
numsteps 10
firststep 0

seed 7536031

posfile bpti.pdb
psffile bpti.psf
parfile bpti.par
temperature 300

outputfreq 1

allenergiesfile bpti.out.energies.shmc

boundaryConditions Periodic
# cellBasisVector1 64.32 0 0
# cellBasisVector2 0 51.167 0
# cellBasisVector3 0 0 51.272

cellManager Cubic
cellsize 4

# removeLinearMomentum 1
# removeAngularMomentum 1
shadowEnergy true

Integrator {

level 1 ShadowHMC {

temperature 300
cyclelength 25
order 8
c 0
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}
level 0 Leapfrog {

timestep 0.5

force Improper
force Dihedral
force Bond
force Angle

force Coulomb
-algorithm NonbondedSimpleFull

force LennardJones
-algorithm NonbondedSimpleFull

}
}

4.5 Langevin Impulse

Here is an example of Langevin Impulse integrator [11] using united-atom butane. The temperature is the
target temperature of the molecule/subsystem. Gamma specifies the collision parameter or the damping
constant. TheNonbondedSimpleFull option specifies that the direct method is used to compute non-bonded
interactions with no cutoff. This works only for non-periodic boundary conditions. PROTOMOL 2.0.3
comes with a feature where one can output the dihedral angle values in a file. The phrase dihedralsfile
specifies the filename where dihedral angle values are recorded in radians. Of course , you’ll have to set the
dodihedralsfile flag to make it work. dihedralsIndex specifies the index of the dihedral. This index specifies
the order of the dihedral angle in psf file which you are interested in. In this example, we are using United-
atom butane and there is only one dihedral, with index 0. To record multiple torsion angle one can use the
dihedralsSetfile flag to specify an input filename where one can list the dihedral indices, one in each line.
Note that dihedralsSet flag should be set in order for PROTOMOL to take multiple dihedral indices as input.

temperature 300
firststep 0

numsteps 500

cellsize 5

outputfreq 10

posfile UA_butane.pdb
psffile UA_butane.psf
parfile UA_butane.par

allenergiesfile ua_butane.lang.out.energy

boundaryConditions vacuum

cellManager Cubic
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dodihedralsfile true
dihedralFileOutputFreq 1
dihedralsfile ua_butane.lang.out.dihedrals
dihedralsIndex 0
dihedralsSet false
dihedralsSetfile testset18

Integrator {
level 0 LangevinImpulse {

timestep 1.0
temperature 300
gamma 7000
seed 0
force Bond
force Angle
force Dihedral
force Improper
force LennardJones Coulomb

-algorithm NonbondedSimpleFull
}

}

4.6 Interaction of PROTOM OL with VMD

You may start VMD normally before you begin running the desired simulation to be viewed in PROTOMOL.
Select the “molecule” option from the main window, and in the resulting molecule window select “Load
From Files”. Then in the files window that opens, under the menu “Molecule File Types” select psf and
pdb, then write the full pathnames of the PSF and PDB files used in the simulation that will be run in the
provided spaces. Now VMD has the initial state of the molecule to be simulated.

Next, in the configuration file that will be used, make sure there is a Haptic force in the integrator. Check
to see that a positive nonzero value is supplied for the “-wait” value under the haptic force. This will force
PROTOMOL to wait some time for an IMD connection, 100 would be a decent value so that you have time
to set VMD to simulate. Also note the port number, which will be used later.

Now run PROTOMOL. It should display “Waiting for IMD connection.....” after a short time. At this
point, go to the VMD console window and type “imd connect <hostname> <port number> ”, where
<hostname> is the name of the machine that PROTOMOL is running on and<port number> is the port
number value specified in the configuration file that is being used.

At this point, VMD will view the molecule throughout the simulation as PROTOMOL runs. Also from
the VMD window IMD commands can be run that will send messages to PROTOMOL. For example, typing
“ imd trate <integer value> ” will change the transmission rate for information from PROTOMOL to
VMD.

As an example, let us return to the integrator section of the alanin configuration file from section 4.1:

Integrator {
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level 0 Leapfrog {
timestep 1

force Improper
force Dihedral
force Bond
force Angle
force LennardJones

-algorithm NonbondedCutoff
-switchingFunction C2

-switchon 0.1
-cutoff 12

force Coulomb
-algorithm NonbondedCutoff
-switchingFunction C1
-cutoff 12

force Haptic
-port 2001
-trate 1
-timeout 1000
-step_inc 100
-wait 100

}
}

The only area that counts as far as the VMD simulation is concerned is the “force Haptic ” section at
the end. Notice first that a-wait value is given that is greater than zero, thus PROTOMOL will wait for an
IMD connection, which is what we want. The port ID is 2001. The other three values are IMD variables.

In this case as soon as PROTOMOL begins waiting for the IMD connection, a user would type
“ imd connect <name of the machine on which P R O T OMO L is running> 2001 ” and the visual
simulation will begin. Now the user can run IMD commands in the IMD window while the simulation is
running.
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Figure 4.2: PHANTOM DesktopTM Haptic Device.
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Appendix A

Contact Information

The best contact path for licensing issues is by e-mail toprotomol@cse.nd.eduor send correspondence to:

PROTOMOL Team
c/o Prof. Jeśus A. Izaguirre
Laboratory for Computational Life Sciences
Department of Computer Science and Engineering
University of Notre Dame
384 Fitzpatrick Hall of Engineering
Notre Dame, Indiana 46556 USA
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